sV

[
c I ra This is a sample module from our
e full “Enterprise Hunting and Incident

Response” course.

. ec
D|gg|ng D | Register for the full course at

https://www.velocidex.com/training/

3y)

r
© 2020 Velocidex Enterprises gk

https://www.velocidex.com/training/

3y)

r
© 2020 Velocidex Enterprises g“

dule overview

Velociraptor implements many forensic capabilities in VQL

This module will focus on typical forensic analysis and deep inspection
capabilities. We will learn how to put the capabilities together to produce
effective artifacts and when to use those.

This module will not use Velociraptor’'s GUI or even the client/server mode
since we are focused on the techniques themselves. Later we can
leverage the same VQL across the network at scale, and effectively hunt

for artifacts across our infrastructure - keep this in mind through this
module.

‘;9\
3 © 2020 Velocidex Enterprises A:A

' I
Searching for files - glo ()

One of the most common operations in DFIR is searching for files
efficiently.

Velociraptor has the glob() plugin to search for files using a glob
expression.

Glob expressions use wildcards to search the filesystem for matches.

1 Paths are separated by / or \ into components
A ™ is a wildcard match (e.g. *.exe matches all files ending with .exe)

4
1 Alternatives are expressed as comma separated strings in {}

O e.g. *{exe,dll,sys} Q\]
1 A ™ denotes recursive search. =

d e.g. C:\Users*\"*.exe 4

© 2020 Velocidex Enterprises R\ v /g

Q)

iy

AV

Velociraptor

[a x |

About Velociraptor
Velociraptor Documentation
Getting Started
User Interface
VQL Reference
Basic VQL
Windows
Parsers
Server
Event Plugins
Experimental
Filesystem Accessors
Report Templates
Artifact Tips
Artifact Reference

Presentations and Workshops

<

glob

Retrieve files based on a list of glob expressions Plugin

The glob() pluginis one of the most used plugins. It applies a glob expression in order to search for files by file name. The glob
expression allows for wildcards, alternatives and character classes. Globs support both forward and backslashes as path

separators. They also support quoting to delimit components.

A glob expression consists of a sequence of components separated by path separators. If a separator is included within a
component it is possible to quote the component to keep it together. For example, the windows registry contains keys with
forward slash in their names. Therefore we may use these to prevent the glob from getting confused:

HKEY LOCAL MACHINE\Microsoft\Windows\"Some Key With http://www.microsoft.com/"\Some Value

Glob expressions are case insensitive and may contain the following wild cards:

The * matches one or more characters.

The ? matches a single character.

Alternatives are denoted by braces and comma delimited: {a, b}

Recursive search is denoted by a ** . By default this searches 3 directories deep. If you need to increase it you can add a
depth number (e.g. **10)

By default globs do not expand environment variables. If you need to expand environment variables use the expand() function

explicitly:

glob(globs=expand(string="%SystemRoot%\System32\Winevt\Logs*"))

Search user’s home directory for binaries.

SELECT * FROM glob (globs="'C:\\Users***.exe')

Note the need to escape \ in strings. You can use / instead and specify
multiple globs to search all at the same time:

SELECT * FROM glob (globs=['C:/Users/**/*.exe',
'C:/Users/**/*.d11'])

2y)

6 © 2020 Velocidex Enterprises /N

—

C:\Program Files\velociraptor>Velociraptor.exe -v query "SELECT * FROM glob(globﬁ%'C:\\Users***.exe')“3

[INFO] 2020-01-24T720:40:23-08:00 Loaded 145 built in artifacts
[

"Atime": {
"sec": 1579866327,
"usec": 1579866327633739000

Ctime": {
"sec": 1579866327,
"usec": 1579866327633739000

e ————

}: —— e —

— —~—

Data’ e S
"FullPath”¢ "\\C:\\Users\\All Users\\Dbg\\sym\\ntoskrnl.exe",)
"GetLink™: ™=, =
"IsDir": true, e — I
"IsLink": false,

"ModTime": "2020-01-2470©3:45:27.633739-08:00",

"Mode": 2147484159,

"Mtime": {

"sec": 1579866327,

"usec": 15798663276337390600

s

"Name": "ntoskrnl.exe",
"Size": O,

"Sys": {

"FileAttributes”: 16,
"CreationTime": {
"LowDateTime": 3317799150,
"HichDateTime": 30790315

S B

—
S— B

© 2020 Velocidex Enterprises

RunONce artifact

Exercise

Write an artifact which hashes every binary mentioned in Run/RunOnce
keys.

“Run and RunOnce registry keys cause
programs to run each time that a user logs on.”

MSDN

‘;9\
8 © 2020 Velocidex Enterprises A:A

= Microsoft I Windows Dev Center Explore v Platforms ~ Docs Downloads Samples Support Dashboard

Docs / Windows / Setup APl / Reference / Run and RunOnce Registry Keys [l Bookmark ¢ Edit |2 Share %

P oty i Run and RunOnce Registry Keys
Setup API 05/31/2018 « 2 minutes to read + & &

> Overview
Run and RunOnce registry keys cause programs to run each time that a user logs on. The

> Creating Setup Applications ; : :
J PARP data value for a key is a command line no longer than 260 characters. Register programs to

v Reference run by adding entries of the form description-string=commandline. You can write multiple
Reference entries under a key. If more than one program is registered under any particular key, the

> Functions order in which those programs run is indeterminate.

> Structures (Setup API
ructures (Setup APY) The Windows registry includes the following four keys:

> Notifications
Error Codes (Setup API) e HKEY _LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run

e HKEY _CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run

e HKEY LOCAL MACHINE\Software\Microsoft\Windows\CurrentVersion\RunOnce

e HKEY CURRENT USER\Software\Microsoft\Windows\CurrentVersion\RunOnce

Run and RunOnce Registry Keys

By default, the value of a RunOnce key is deleted before the command line is run. You can

prefix a RunOnce value name with an exclamation point (!) to defer deletion of the value

4 Bownload PDE until after the command runs. Without the exclamation point prefix, if the RunOnce

operation fails the associated program will not be asked to run the next time you start the w
© 2020 Velocidex Enterprises

aW regis

try parSmg

In the previous exercise we looked for a key in the
HKEY CURRENT USER hive.

HKEY_CURRENT_USER

Registry entries subordinate to this key define the preferences of the current user. These
preferences include the settings of environment variables, data about plogram groups colors,

printers, network connections, and application g establish

HKEY_CURRENT_USER, softwale vendors store - = i e o be used
within their applications. Microsoft, for example, creates the
HKEY_CURRENT_USER\Software\Microsoft key for its applications to use, with each application
creating its own subkey under the Microsoft key.

The mapping between HKEY_CURRENT_USER and HKEY_USERS is per process and is established
the first time the process references HKEY_CURRENT_USER. The mapping is based on the security
HKEY CURRENT_USER. If this security context does not
mapping is established with

pping is established it persists, even if the security context of

the thread changes
All registry entries in HKEY_CURRENT_USER except those under
HKEY_CURRENT_USER\Software\Classes are included in the per-user registry portion of a

roaming user profile. To exclude other entries from a roaming user profile, store them in
HKEY_CURRENT_USER_LOCAL SETTINGS

This handle should not be used in a service or an application that impersonates different users.
Instead, call the RegOpenCurrentUser function

For more information, see HKEY_CURRENT_USER.

Any artifacts looking in
HKEY_USERS using the
Windows API are limited to the
set of users currently logged
in! We need to parse the raw
hive to reliably recover all
users.

© 2020 Velocidex Enterprises

9

r:
AV

Raw registry Parsio

Each user’s setting is stored in:
C:\Users\<name>\ntuser.dat

It is a raw registry hive file format. We need to use
raw_reg accessor.

The raw reg accessor uses a URL scheme to access the
underlying file.
Q)

v

1 1 © 2020 Velocidex Enterprises

:\Program Files\velociraptor>Velociraptor.exe -v query "SELECT * FROM glob(globs=url(scheme='file', path='C:/Users/test/ntuser.dat’,

fragment="/**/Run/*").String, accessor="raw_reg')"
INFO] 2020-01-25T706:27:39-08:00 Loaded 147 built in artifacts

"Atime": {
"sec": 1578620073,
"usec": 1578620073000000000
}s
"Ctime": {
"sec": 1578620073,
"usec": 1578620073000000000
¥s
"Data": {
"type": "REG_SZ",
"data_len": 148,
"value": "\"C:\\Users\\test\\AppData\\Local\\Microsoft\\OneDrive\\OneDrive.exe\" /background"

e
"FullPath™| "file:///C:/Users/test/ntuser.dat#Software/Microsoft/Windows/CurrentVersion/Run/OneDrive”,

"Getlink": =5

"IsDir": false,

"IsLink": false,

"ModTime": "2020-01-09T717:34:33-088:00",
"Mode": 493.

© 2020 Velocidex Enterprises PNy

gearching data

3y)

‘:@
© 2020 Velocidex Enterprises /g

A powerful DFIR technique is searching bulk data for
patterns

A Searching for CC data in process memory

A Searching for URLs in process memory

A Searching binaries for malware signatures

A Searching registry for patterns

Bulk searching helps to identify evidence without
needing to parse file formats ‘5@

1 4 © 2020 Velocidex Enterprises /N

YARA is a powerful keyword scanner

Uses rules designed to identify binary patterns in bulk
data

YARA is optimized to scan for many rules
simultaneously.

Velociraptor supports YARA scanning of bulk data (via
accessors) and memory.

yara() and proc_vyara() ‘!@

1 5 © 2020 Velocidex Enterprises /N

https://github.com/VirusTotal/yara
https://www.velocidex.com/docs/vql_reference/plugin/#yara
https://www.velocidex.com/docs/vql_reference/windows/#proc-yara

yARA rules

rule X {
strings:
$a = “hello” nocase
$b = “Goodbye” wide
$c = /[a-z]{5,10}[0-9]/i

condition:
$a and ($b or $c)

16

3y)

r
© 2020 Velocidex Enterprises A:A

load
Exercise: drive bY down

You suspect a user was compromised by a drive by download (i.e. they
clicked and downloaded malware delivered by mail, ads etc).

You think the user used the Edge browser but you have no idea of the
internal structure of the browser cache/history etc.

Write an artifact to extract potential URLs from the Edge browser directory
(also where is it?)

3y)

=

1 7 © 2020 Velocidex Enterprises R\ v /g

C:\Program Files\velociraptor>Velociraptor.exe -v query "SELECT Pid FROM pslist(A WHERE Name =~ ‘Edge’ LIMIT 2"
[INFO] 2020-01-25T719:05:14-08:00 Loaded 147 built in artifacts

"Pid": 9032

]
C:\Program Files\velociraptor>Velociraptor.exe -v query| "SELECT Name FROM handles(pid=9384) WHERE Type='File®' LIMIT 5"

[INFO] 2020-01-25T719:05:21-08:00 Loaded 147 built in artifacts
[

"Name™: "\\Device\\DeviceApi"

~

c

o

"Name": "\\Device\\HarddiskVolume4\\Users\\test\\AppData\\Local\\Packages\\Microsoft.MicrosoftEdge_ 8wekyb3d8bbwe\\AC\\MicrosoftEdge
\\User\\Default\\DataStore\\Data\\nouser1\\120712-08049\\DBStore\\spartan.jfm"

3

ey

"Name": "\\Device\\HarddiskVolume4\\Users\\test\\AppData\\Local\\Packages\\Microsoft.MicrosoftEdge 8wekyb3d8bbwe\\AC\\MicrosoftEdge
\\User\\Default\\DataStore\\Data\\nouser1\\120712-080649\\DBStore\\spartan.edb”

o- Recover URLS

Step

We don't exactly understand how Edge stores data but we know roughly
what a URL is supposed to look like!

Yara is our sledgehammer !

rule URL {

strings: $Sa = /https?:\\/\\/[a-z0-9\\/+&#:\\?2.-]+/1
condition: any of them

9)

1 9 © 2020 Velocidex Enterprises /N

C:\Program Files\velociraptor>Velociraptor.exe query -v "SELECT * FROM foreach(row={ SELECT FullPath from glob(globs="'c:\\Users*\\A
ppData\\Local\\Packages\\Microsoft.MicrosoftEdge */**')}, query={ SELECT str(str=String.Data) As Hit, String.Offset AS Offset, FilelNa
me FROM yara(files=FullPath, rules="rule X { strings: $a = /https?:\\/\\/[a-z@-9\\/+&#:\\?.-]+/1 condition: any of them }')})"
[INFO] 2020-01-25T719:12:18-08:00 Loaded 147 built in artifacts
[
{
"Hit": "https://img-s-msn-com.akamaized.net/tenant/amp/entityid/AAdTRyf.img",
"Offset": 87,
"FileName": "\\C:\\Users\\test\\AppData\\Local\\Packages\\Microsoft.MicrosoftEdge 8wekyb3d8bbwe\\LocalState\\Favicons\\TopSites\\25
248558600\ \msapplication.xml”
}J
{

"Hit": "https://img-s-msn-com.akamaized.net/tenant/amp/entityid/AAcOvHK.img",

"Offset”: 87,

"FileName": "\\C:\\Users\\test\\AppData\\Local\\Packages\\Microsoft.MicrosoftEdge 8wekyb3d8bbwe\\LocalState\\Favicons\\TopSites\\68
37022160\\msapplication.xml”

3

i

"Hit": "https://img-s-msn-com.akamaized.net/tenant/amp/entityid/AAJXS5zh.img",
"Offset": 87,
"FileName": "\\C:\\Users\\test\\AppData\\Local\\Packages\\Microsoft.MicrosoftEdge 8S8wekyb3d8bbwe\\LocalState\\Favicons\\TopSites\\71

80116100\ \msapplication.xml”

1
)

© 2020 Velocidex Enterprises

=] e =l |

[*] edge yaml E3

name: Windows.Application.EdgeUrls

name :
default: Users*\AppData\Local\Packages\Microsoft.MicrosoftEdge */**

name: URLYaraRule -
default: | Administrator: Command Prompt O

C:\Program Files\velociraptor>Velociraptor.exe --definitions artifacts artifacts collect
Windows.Application.EdgeUrls

[![

L
b "Hit": "https://img-s-msn-com.akamaized.net/tenant/amp/entityid/AAzObNi.img",
- queries: "Offset": 87,
) REDS : "FileName": "\\C:\\Users\\test\\AppData\\Local\\Packages\\Microsoft.MicrosoftEdge_8wek
b3d8bbwe\\LocalState\\Favicons\\TopSites\\13783203330\\msapplication.xml"

obs=EdgeGlob) 5

=

ing.Data) As Hit, "Hit": "https://img-s-msn-com.akamaized.net/tenant/amp/entityid/BBX4bfQ.img",

FileName "Offset": 87,
: "FileName": "\\C:\\Users\\test\\AppData\\Local\\Packages\\Microsoft.MicrosoftEdge_ S8wek
b3d8bbwe\\LocalState\\Favicons\\TopSites\\156246139806\\msapplication.xml"

1
i)

)

© 2020 Velocidex Enterprises !

YARA pest practice

You can get yara rules from many sources (threat intel, blog posts etc)
YARA is really a first level triage tool:

A Depending on signature many false positives expected
A Some signatures are extremely specific so make a great signal

Try to collect additional context around the hits to eliminate false
positives.

Yara scanning is relatively expensive! consider more targeted glob
expressions and client side throttling since usually YARA scanning is not
time critical. Q\

=

22 © 2020 Velocidex Enterprises R\ v /g

NTFS Analysis

3y)

@
© 2020 Velocidex Enterprises /g

NTFS overview

NTFS is the standard Windows filesystem.

. All files are represented in a Master File Table

. Files can contain multiple attributes:
d Filename (Long name/Short name)
4 Data attribute — contains file data
d 130 attribute (contains directory listing)

4 Data attributes may be compressed or sparse
4 Filename attributes contain their own timestamps Q)

24 © 2020 Velocidex Enterprises ,@

The NTFS file system contains a file called the master file
table, or MFT. There is at least one entry in the MFT for
every file on an NTFS file system volume, including the
MFT itself. All information about a file, including its size,
time and date stamps, permissions, and data content, is
stored either in MFT entries, or in space outside the MFT
that is described by MFT entries.

https://docs.microsoft.com/en-us/windows/win32/fileio/master-file-table

2 5 © 2020 Velocidex Enterprises

2y)

v

https://docs.microsoft.com/en-us/windows/win32/fileio/master-file-table

NTFS Conceps

https://www.fireeye.com/blog/threat-research/2012/10/incident-response-ntfs-indx-buffers-part-4-br-internal.html

VBR MFT File Contents

[———— b

~

MFT Record
Cluster offset Cluster offset

Figure 1: NTFS Volume Layout Showing the SMFT

4

)

https://www.fireeye.com/blog/threat-research/2012/10/incident-response-ntfs-indx-buffers-part-4-br-internal.html

Velociraptor has 2 accessors providing access to NTFS
A ntfs - Supports Alternate Data Streams in directory
listings.
A lazy ntfs - much faster but does not detect ADS.

Due to these accessors it is possible to operate on files
in the NTFS volume using all the usual plugins.

2y)

v

2 7 © 2020 Velocidex Enterprises

f;\Program Files\velociraptor>Velociraptor.exe -v query "SELECT * FROM glob(globs="C:*', accessor="ntfs")"
[INFO] 2020-01-27T702:31:38-08:00 Loaded 147 built in artifacts

[

{
"Atime": {
"sec": 1578682526, .
"usec": @ The NTFS accessor makes NTFS specific
%Etime"' . information available in the Data field. For regular
"sec": 1578682526, files it includes the inode string.
"usec": ©
Ts
"Data": {
"mft": "4-128-1",
"name_type": "DOS+Win32"
%,
"FullPath™: "\\\\.\\C:\\$AttrDef",
"GetLink": "", . .
"Isoir;: f;lie, The NTFS accessor considers all paths to begin
"IsLink": 5 i i i
diico-: 5630 ntaerio neiie 651961 Hader. with a device name. For convenience the accessor
“Mode”: 493, also accepts a drive letter.
Mtime": {
"sec": 1578682526,
"usec": ©
}

"Name": "$AttrDef",
"Size": 2560,
"Sys": {
"mft": "4-128-1",
"name_type": "DOS+Win32"
}
?'

© 2020 Velocidex Enterprises

NTFS allows for a special copy on write snapshot feature
called “Volume Shadow Copy”.

Create a VSS copy on your own machine using WMI:

On Windows server OS

C:\Program Files\velociraptor>wmic shadowcopy call create Volume="c:\’

Executing (Win32_ ShadowCopy)->create() yOU can use.

Method execution successful.

Out Parameters: vssadmin create shadow
instance of _ PARAMETERS

f

1

ReturnValue = 0; :

ShadowID = "{8E4S5ADC3-EAGF-4316-9C48-082A25B21CA6D}"; Q
-

© 2020 Velocidex Enterprises ,;:A

J >

When a VSS copy is created, it is accessible via a
special device. Velociraptor allows the VSS copies to be
enumerated by listing them at the top level of the
filesystem.

At the top level, the accessor provides metadata about
each device in the “Data” column, including its creation
time.

30 © 2020 Velocidex Enterprises

2y)

v

C:\Program Files\velociraptor>Velociraptor.exe -v query "SELECT Name, Data FROM glob(globs='/*', accessor="ntfs')"

[INFO] 2020-01-27T702:49:39-08:00 Loaded 147 built in artifacts

[
{
"Name": "\\\\.\\C:",
"Data": {
"Description’: "Local Fixed Disk",
"DeviceID": "C™;
"FreeSpace": "39434489856",
"Size": "63747125248",
"SystemName"”: "DESKTOP-3JHOIO®",
"VolumeName": "",
"VolumeSerialNumber": "A2856979"
¥
}s
{
"Name": "\\\\?\\GLOBALROOT\\Device\\HarddiskVolumeShadowCopy1",
"Data": {
"DeviceObject™: "\\\\?\\GLOBALROOT\\Device\\HarddiskVolumeShadowCopy1"”,
"ID": "{8E45 \DC3-EABF-4316-9C48-02A25B21CA6D} ",
"InstallDate”: "202001270623849.152615-488", ?
"Originating - =3JHOIOUG,
"VolumeName": "\\\\2\\Volume{15d7d938-95f9-4695-841c-52def143e8d3}\\"
¥
¥
]

© 2020 Velocidex Enterprises

operating on V83

Simply use the VSS device name as a prefix to all paths
and the ntfs accessor will parse it instead.

You can use it to analyze older versions of the drive!

C:\Program Files\velociraptor>Velociraptor.exe -v query "SELECT Name FROM glob(globs="\\\\?\\GLOBALROOT\\Device\\HarddiskVolumeShadowCopyl" + "/
$*', accessor="ntfs')"

[INFO] 2020-01-27T703:01:18-08:00 Loaded 147 built in artifacts

[

"Name": "$AttrDef"
1
1

"Name": "$BadClus™
1

1
"Name": "$BadClus:$Bad”
1

L
"Name": "$Bitmap"
1

Q)

g

AV

Velociraptor

[a x |

About Velociraptor
Velociraptor Documentation
Getting Started
User Interface
VQL Reference
Basic VQL
Windows
Server
Client
Event Plugins
Experimental
Filesystem Accessors
Report Templates
Artifact Tips
Artifact Reference

Presentations and Workshops

Velociraptor Blog

parse_mift
Scan the $MFT from an NTFS volume. Plugin
Arg Description Type
filename Alist of event log files to parse. string (required)
accessor The accessor to use. string
parse_ntfs
Parse an NTFS image file. Function
Arg Description Type
device The device file to open. This may be a full path - we will figure out the device automatically. string (required)
inode The MFT entry to parse in inode notation (5-144-1). string
mft The MFT entry to parse. inté64
mft_offset The offset to the MFT entry to parse. int64
parse_ntfs_130
Scan the $130 stream from an NTFS MFT entry. Plugin
Arg Description Type

device The device file to open. This may be a full path - we will figure out the device automatically. string (required)

V,

.
parsing the MF

You can download the entire SMFT file from the endpoint
using the ntfs accessor, then process it offline.

You can also parse the SMFT on the endpoint using
Velociraptor.

This is most useful when you need to pass over all the
files in the disk - it is more efficient than a recursive glob
and might recover deleted files. ‘5@

34 © 2020 Velocidex Enterprises /N

:\Program Files\velociraptor>Velociraptor.exe -v query "SELECT * FROM parse_mft(filename="C:/$MFT', accessor="ntfs') WHERE FileName =~ '.exe$’
IMIT 5"
INFO] 2020-©1-25T719:45:23-08:00 Loaded 147 built in artifacts

"EntryNumber”: 197,

"InUse": true,

"ParentEntryNumber”: 80815,

"FullPath": "Users/test/AppData/Local/Microsoft/WindowsApps/GameBarElevatedFT_Alias.exe",
"FileName": "GameBarElevatedFT_Alias.exe",

"FileSize": O,

"ReferenceCount™: 2,

"IsDir": false,

"Createdox18": "2020-01-11T01:48:51.5704654-088:00",
"Createdox30": "2020-01-11701:48:51.5704654-08:00",
"LastModifiedox10": "2020-01-11T701:48:51.5704654-08:00",
"LastModifiedox30": "2020-01-11T701:48:51.5704654-08:00",
"LastRecordChangeox10": "2020-01-11701:48:51.5835566-08:00",
"LastRecordChange®x30": "2020-01-11T01:48:51.5704654-08:00",
"LastAccessOx10": "2020-01-11T701:48:51.5704654-08:00",
"LastAccessOx30": "2020-01-11T701:48:51.5704654-08:00"

3

e

"EntryNumber”: 199,

"InUse": true,

"ParentEntryNumber”: 198,

"FullPath": "Users/test/AppData/Local/Microsoft/WindowsApps/Microsoft.XboxGamingOverlay 8wekyb3d8bbwe/GameBarElevatedFT_Alias.exe",
"FileName": "GameBarElevatedFT_Alias.exe",

"FileSize": O,

"ReferenceCount”: 2,

"IsDir": false,

"Createdox10": "20820-01-11701:48:51.5844941-08:00",
"Createdox30": "2020-01-11T701:48:51.5844941-088:00",
"LastModifiedox10": "2020-01-11T701:48:51.5844941-08:00",
"LastModifiedox30": "2020-01-11701:48:51.5844941-08:00",
"LastRecordChange®x10": "2020-01-11T701:48:51.5854755-08:00",
"LastRecordChange®x30": "2020-01-11701:48:51.5844941-08:00",
"LastAccessOx10": "2020-01-11T701:48:51.5844941-088:00",
"LastAccessOx30": "2020-01-11T701:48:51.5844941-08:00"

¥

Efficiently find all .exe on disk that were created after Jan 20, 2020

C:\Program Files\velociraptor>f:\Velociraptor.exe query -v "SELECT EntryNumber, FullPath, InUse, FileSize, Created®x1® FROM parse_mft
(filename="C:\\$MFT", accessor="ntfs') WHERE FullPath =~ '.exe$' AND Createdox106 > '20206-01-20°
[INFO] 2020-01-28T05:54:32-08:00 Loaded 147 built in artifacts
[
{
"EntryNumber”: 197,
"FullPath": "Users/test/AppData/Local/Microsoft/WindowsApps/GameBarElevatedFT_Alias.exe",
"InUse": true,
"FileSize": 0O,
"Createdox10": "20620-01-11701:48:51.5704654-08:00"

)

"EntryNumber”: 21312,

"FullPath": "Users/test/AppData/Local/Microsoft/OneDrive/19.222.1110.0006/FileCoAuth.exe",
"InUse": true,

"FileSize": 506216,

"Createdox10": "2020-01-206T717:04:18.0133036-08:00"

I

MFT Entries

An MFT Entry can have multiple attributes and streams
The previous plugin just shows high level information
about each MFT entry - we can dig deeper with the
parse_ntfs() plugin which accepts an mft ID.

Choose a file of interest in the previous output and
iInspect it deeper.

2y)

v

37 © 2020 Velocidex Enterprises

. |
:\Program Files\velociraptor>Velociraptor.exe -v query "SELECT parse_ntfs(device='c:/', mft=974) from scope()"
INFO] 2020-01-25T720:06:09-08:00 Loaded 147 built in artifacts

An inode is a triple of
(mft id, type id and id
"parse_ntfs(device="c:/", mft=974)": {
"FullPath": "Program Files/WindowsApps/Microsoft.Xbox.TCUI_1.24.10001.0_x64__8wekyb3d8bbwe/TCUI-App.exe",
"MFTID": 974,
"Size": 18432,

e.g. 974-16-0
"Allocated”: true,
"IsDir": false,
"SI _Times": {

representing a stream
"CreateTime": "2020-01-11701:49:05.8473789-088:00", Of data
"FileModifiedTime": "2020-01-11T701:49:08.100144-08:00",
"MFTModifiedTime": "2020-01-11701:49:08.1021724-08:00",

"AccessedTime": "2020-01-11T701:49:08.100144-068:00"
}s

"Filenames": [

"Times": {

"CreateTime": "2020-01-11T701:49:05.8473789-08:00",
"FileModifiedTime": "2020-01-11T01:49:05.8473789-08:00",
"MFTModifiedTime": "2020-01-11T01:49:05.8473789-08:00",
"AccessedTime": "2020-01-11T701:49:05.8473789-08:00"

}s
"Type": "DOS+Win32",
"Name": "TCUI-App.exe"

}

ttributes”: [

]

"Type": "$STANDARD_INFORMATION",

"TypeId": 16,

ZTd> s O

"Inode": "974-16-0",
"Size": 72,

"Name": ""

) 9

Y
© 2020 Velocidex Enterprises

NTFS timestamps

An MFT entry can have up to 16 timestamps!
Timestamps are critical to forensic investigations

A Determine when files were copied
A When files were modified
A And sometimes we can determine when a file was accessed

In NTFS there are timestamps

1. In $STANDARD INFORMATION stream (usually only 1)
2. Inthe SFILENAME stream (sometimes 2 or 3) |
3. In the $I30 stream of the parent directory (see later) Q\

=

39 © 2020 Velocidex Enterprises R\ v /g

Timestomping

Attackers sometimes change the timestamps of files to make them less
obvious. E.g make malware look like it was installed many years ago.

For the next exercise we will stomp over some times. Use the provided
TimeStomper tool to stomp over Velociraptor.exe’s timestamps.

https://qgithub.com/slyd0a/TimeStomper

https://posts.specterops.io/revisiting-ttps-timestomper-622d4c28a655

3y)

=

40 © 2020 Velocidex Enterprises R\ v /g

https://github.com/slyd0g/TimeStomper
https://posts.specterops.io/revisiting-ttps-timestomper-622d4c28a655

e iy e e o]
C:\Program Files\velociraptor>TimeStomper.exe -p Velociraptor.exe -p2 c:\Windows\System32\cmd.exe
cELCC e lliodifying time for Velociraptor.exe
Copying time from c:\Windows\System32\cmd.exe
SetFileTime() success on Velociraptor.exe

Type of file: Application (.exe) Type of file: Application (.exe)

Description: velociraptor Description: velociraptor
Location: C:\Program Files\velociraptor Location: C:\Program Files\velociraptor

Size: 36.9 MB (38.752.256 bytes) Size: 36.9 MB (38,752,256 bytes)

Size on disk: 36.9 MB (38,752,256 bytes) Size on disk: 36.9 MB (38,752,256 bytes)

Created: Monday, January 27, 2020, 4:06:35 AM Created: Monday, March 18, 2019, 9:45:17 PM

Modified: Friday, January 24, 2020, 5:01:05 PM Modified: Monday, March 18, 2

A od: » ' 27 2020 4-06:39 A =
Accessed: Today, January 27, 2020, 4:06:35 AM Accessed: Today, January 27,

Attributes: [JRead-only []Hidden Advanced... Aftributes: [[JRead-only []Hidden Advanced...

‘:\Program Files\velociraptor>Velociraptor.exe query -v "SELECT parse_ntfs(device=FullPath, inode=Data.mft) from glob(globs='c:\\pro

ram files\\velociraptor\\velociraptor.exe®, accessor="ntfs")"
[INFO] 2020-01-27T04:17:31-08:00 Loaded 147 built in artifacts
[

{

"parse_ntfs(device=FullPath, inode=Data.mft)": {
“FullPath": "Program Files/velociraptor/velociraptor.exe”,
"MFTID": 240524,

"Size": 38752256,

"Allocated": true,

"IsDir”:. £21 se,

"SI_Times": {

"CreateTime": "2019-83-18T21:45:17.086-87:00",
"FileModifiedTime": "2019-03-18T721:45:17.086-07:00",
"MFTModifiedTime": "2020-081-27T704:08:18.8459313-088:00",
"AccessedTime": "2020-01-27T04:17:30.8560161-08:00"

I

"Filenames": [

"Times": {

"CreateTime": "2020-081-27T04:06:39.4850472-08:00",
"FileModifiedTime": "2020-01-27T04:06:39.4850472-08:00",
"MFTModifiedTime": "20208-01-27T04:06:39.4850472-08:00",
"AccessedTime": "2020-01-27T04:06:39.4850472-083:00"

1y
"Type™: "DOS",

"Name": "VELOCI~1.EXE"
}l

s

L

"Times": {

"CreateTime": "2020-01-27T04:06:39.4850472-08:00",
"FileModifiedTime": "2820-01-27T04:086:39.4850472-08:08",
"MFTModifiedTime": "2020-01-27T704:06:39.4850472-08:00",
"AccessedTime": "20820-01-27T04:06:39.4850472-083:00"

ta

"Type": "Win32",

"Name": "velociraptor.exe"
b
]J
"Attributes”: [

© 2020 Velocidex Enterprises

mping

Write an artifact that detects when a file has had its time stomped.

Note: This is not necessarily a smoking gun - many installers will update
a file’s timestamps during installation.

http://www.forensickb.com/2009/02/detecting-timestamp-changing-utlities.html

9\
43 © 2020 Velocidex Enterprises A:A

http://www.forensickb.com/2009/02/detecting-timestamp-changing-utlities.html

Ez\Program Files\velociraptor>f:\Velociraptor.exe query -v "SELECT FullPath, Created®x19, Createdox30© FROM parse mft(filename='C:\\$M
FT', accessor="ntfs') WHERE Createdd®x1® < Created®x3® AND FullPath =~ "\\.exe$' AND Created®x30 > '2020-061-20'
[INFO] 2020-01-27705:28:40-08:00 Loaded 147 built in artifacts

[
"FullPath™: "Program Files/Common Files/microsoft shared/ink/InputPersonalization.exe",
"Createdox10": "2019-83-18T721:45:49.9651562-07:00",
"Createdox30": "2020-01-106T10:55:53.7250247-08:60"

5

1L

{
"FullPath": "Program Files/Notepad++/updater/GUP.exe",
"Createdox10": "2020-01-12T713:42:36-068:00",
"Createdox30": "2020-01-20T718:34:18.388148-08:00"

¥s

{
"FullPath": "Program Files/Notepad++/notepad++.exe”,
"Createdox10": "2020-01-12T713:41:46-068:00",
"Createdox30": "2020-01-20T18:34:18.6069468-08:00"

5

I

"FullPath™: "Program Files/velociraptor/velociraptor.exe”,
"Createdox10": "2019-03-18T721:45:17.0686-07:00",
\"Created6x30": "2020-01-27T04:06:39.4850472-08:60"

}
1

Many binaries are timestomped naturally because they come from CAB or MSI files.
To eliminate noise you can narrow the created time from the $FILE_NAME attribute Q\

© 2020 Velocidex Enterprises N\

In NTFS a directory is simply an MFT entry with $130
streams. The streams contains a B+ tree of the MFT
entries in the directory.

Since INDX streams are a B+ tree when a record is

deleted, the tree will be reordered. Sometimes this
leaves old entries in the slack space.

45 © 2020 Velocidex Enterprises

2y)

v

é;\Program Files\velociraptor>f:\Velociraptor.exe query -v "SELECT parse_ntfs(device=FullPath, inode=Data.mft) FROM glob(globs="C:\\P
rogram Files\\Velociraptor', accessor="ntfs')"

[INFO] 2020-01-27T05:39:20-08:00 Loaded 147 built in artifacts

[

{
"parse_ntfs(device=FullPath, inode=Data.mft)": {

"FullPath": "Program Files/velociraptor”,
"MFTID": 1875,

"Size": O,

"Allocated"”: true,

"IsDir": true,

"Attributes": [

{
“Type": "$STANDARD_INFORMATION",

"TypeId": 16,
SLds210,

i
"Type": "$INDEX_ROOT",
"TypeId": 144,
2 s by
"Inode": "1075-144-7",
"Size": 56,
"Name": "$I30"
1 INDX stream is allocated in 4096 bytes. Contains information

“Type™: "$INDEX_ALLOCATION", about the directory contents.

"TypeId": 160,
23 s R
"Inode": "1©75-
"Size": 4096,
"Name": "$I30"
}s

g INDX header=

https://www.fireeye.com/blog/threat-research/2012/10/incident-response-ntfs-indx-buffers-part-4-br-internal.html

carvin

INDX Nod
H"’e'"éaero . Active INDX Records Slack Space

\/K N
B -5 - =

INDX Record "F" deleted

Active INDX Records shift to fill space; a copy of Record "H" is recoverable from slack

4y

Y,
9 2020 Velocidex Enterprises R\ /A

https://www.fireeye.com/blog/threat-research/2012/10/incident-response-ntfs-indx-buffers-part-4-br-internal.html
https://www.fireeye.com/blog/threat-research/2012/10/incident-response-ntfs-indx-buffers-part-4-br-internal.html

Add and remove files from a directory and observe which files can be
carved from the $130 stream.

See previous slide to verify the process.

C:\Program Files\velociraptor>del Z1.txt

C:\Program Files\velociraptor>f:\Velociraptor.exe query
e="1075") WHERE Name =~ "txt’

[INFO] 2020-01-27T717:06:14-08:00 Loaded 147 built in artifacts
|

-v "SELECT Name, IsSlack, SlackOffset FROM parse ntfs i3@(device="C:\\', inod

f
1
"Name": "Z1.txt",
"IsSlack": true.
"SlackOffset": 976

"Name": "Z1.txt",
"IsSlack": true,
"SlackOffset": 1072

Sometimes we need to prove that a file used to exist in a
directory - just the presence of the name and timestamps is
significant!

Example:
D FIN8 de|eteS prefetCh flIeS https://attack.mitre.org/techniques/T1107/

Write an artifact that recovers the filenames of deleted files in
directories. @\

49 © 2020 Velocidex Enterprises ﬁ

https://attack.mitre.org/techniques/T1107/

SELECT * FROM foreach (

row={
SELECT FullPath, Data.mft AS MFT
FROM glob (globs=DirectoryGlobs, accessor="ntfs")
WHERE IsDir

I

query={
SELECT FullPath, Name, NameType, Size, AllocatedSize,

IsSlack, SlackOffset, Mtime, Atime, Ctime, Btime, MFTId

FROM parse ntfs 130 (device=FullPath, inode=MFT)

}) |
%)

50 © 2020 Velocidex Enterprises R\ v /g

3y)

‘@
© 2020 Velocidex Enterprises /N

https://www.velocidex.com/training/

